Beam Line – X-Rays T. Ishikawa

Part 1. General Discussion Part 2. Beamline X-Ray Optics

Introduction

- In the 1st part, general aspects of x-ray beamlines are presented.
- The 2nd part is devoted to the discussion of xray optics for beamlines, including some detail of double-crystal x-ray monochromators.

Beamline as an Optical System

Source: System Input

Bending Magnet

- White X-Rays
- Wide Horizontal Divergence
- ♦ 1/Gamma Limited Vertical Divergence
- Moderate Power
- Moderate Power Density
- Wiggler
 - White X-Rays
 - Moderate Horizontal Divergence
 - ♦ 1/Gamma Limited Vertical Divergence
 - High Power
 - High Power Density
 - Elliptically Polarized/Linearly Polarized

Undulator

- Quasi-Monochromatic X-Rays
- Small Verical and Horizontal Divergence (Central Cone)
- High Power
- Extremely High Power Density
- Circularly Polarized/ Linearly Polarized

Beam: System Output

Spatial Size

- Small Beam for Small Samples
- Wide Beam for Large Samples

Beam Divergence

- Parallel Beam for High Angular Resolution
- Convergent Beam for Higher Photon Density

Energy

- Particular Energy for particular phenomena
- Energy Resolution
- Energy Purity (Higher Harmonics Contamination)

Polarization

- Linear Polarization
- Elliptical Polarization
- Circular Polarization
- Polarization Switching

X-Ray Beam Line: Conceptual

Functions of Beam Line

Photon Tailoring

• Energy, Energy Resolution, Size, Divergence, Polarization

Other Functions

On/Off Control

- Vacuum
 - Absorption, Protection of Equipment, Protection of Storage Ring, Reduction of Scattering
- Human Safety
 - ◆ Radiation Shield, Safety Interlock
- Interface
 - Storage Ring Interface
 - ◆ User Interface

Structure of a Beam Line

SPring-8, BL01B1 (Bending Magnet Beamline)

JASS02

Front End

(1) Vacuum System (Ion Pump)

Keep High Vacuum ($10^{-7} \sim 10^{-5}$ Pa)

(2) Main Beam Shutter

On/Off Control

- Water-Cooled Absorber
- Beam Shutter

400 mm thick W

(3) Masks, XY-Slit

Spatial Power Control, Spatial Shaping

(4) Water-Cooled Be Window

Separation of Vacuum from Optics

(5) Photon Beam Position Monitor

Example: Front End of BL19LXU at SPring-8

Radiation Spectrum of Undulator

Masking off-axis radiation at front-end reduces power load on optical elements.

Vacuum

Oil-Free Vacuum

Protect Ring Vacuum

- keep long beam life time
- suppress high energy gamma-ray

Avoid Absorption/Scattering

- transport photon intensity as high as possible
- avoid radiation leakage due to scattering

Avoid Contamination and Deterioration of Optical Elements

Carbon contamination, Oxidization

Vacuum Pumping Units

Undulator Beamline

Bending Magnet Beamline

JASS02

Optics and Beam Transport

Optical Components

Crystal Monochromators Total Reflection Mirrors Beam Transport Components

Exhaustion Unit Downstream Shutter Gamma-Ray Stopper Beryllium Window Screen Monitor Limit Energy Band-Pass Focusing, Higher Harmonics Rejection

Reduction of Absorption/Scattering On/Off Control of Monochromatic Beam Stop Gamma-Ray originated by Gas-Bremsstrahlung Separate Beam Line Vacuum from Atomosphere Monitor Beam Position/Intensity

Major Optical Components in X-ray Beam Lines

Crystal Monochromators

Energy Selection Energy Bandwidth Focusing (Optional)

Total Reflection Mirrors

Higher Harmonics Rejection Beam Focusing/Collimation Beam Deflection

Radiation Shielding Hutch

Beam Line Interlock System (X-rays)

Good thing for x-ray beam lines (as compared with VUV and SX BLs) is: You can access your sample easily (not in UHV).

But you should be very careful to protect yourself from radiation environment.

Unfortunately, not all the users are very careful, facilities must take care of them by equipping <u>interlock systems.</u>

Beam Line Interlock System (X-rays)

When your work in the shield is done,

Confirm no one remaining in the shield,

Close the shield door, (Some sensors tell the status of the shield door to ILC system) When you enter the shield for work, Ready for shutter operation Close the shutter Open the shutter Ready for door operation

Open the shield door

ILC system also look around equipments to protect the beam line

ILC: Human safety Equipment Protection

Control System/Data Acquisition

JASS02

Beamline Control System

JASS02

Design & Construction of Beam Lines

Most Beamline Components are Commercially Available. Some Companies can Make Total Design and Construction.

Custom Made v.s. Order Made

Depends on Facility Strategy, Budget, Man-power and Term

- Order Made
 - Best Optimization
 - More Man-Power
 - More Budget
 - More Operating Staff

- Custom Made
 - Moderate Optimization
 - ◆ Less Man-Power
 - ♦ Less Budget
 - Less Operating Staff

End of Part 1

Introduction for Part 2: X-Ray Optics

- X-Ray Monochromator
 - Basic Consideration
 - Various Double-Bounce Monochromator
 - Cooling Issue
- X-Ray Mirrors
 - Basic Consideration
 - Current Status and Problems
- Combined Optics

X-Ray Monochromatization: Principle Perfect Crystal = 3D Grating

Bragg Reflection from netplanes with spacings of *d* at glancing angle θ monochromate x-rays at a wavelength $\lambda = 2d \sin \theta$

Diffraction Condition: $n\lambda = 2d\sin\theta$, n: integer Higer Harmonics

Simplest Crystal Monochromator

Rotate Single Bounce Crystal

Double Crystal Monochromator

Double Bounce Reflection with the Same Netplanes.

Monochromatic Beam is Parallel to the Incident Beam.

Netplanes of Two Crystals Should be Parallel within Sub-Microradian Angular Precision.

Channel-Cut Monochromator

Separated Double Crystal Monochromator

Channel-Cut Monochromator

- Automatically Fulfill Parallel Setting
- Less Perfect Surface Finish of Groove Walls
- Mechanically Aligned Two Flat Crystals
 - Better Surface Finish
 - Detuning capability
 - More Complicated Mechanism

Fixed-Exit Double-Crystal Monochromator

For most experiments, it is desirable to use different energies with the same beam path.

Rotation of both crystals + translation are needed.

Sub-microradian parallelity should be kept during translation.

High precision rotation and translation without yawing or pitching.

JASS02

Fix-Exit DCM: Computer Linked

Independent rotation stages for 1st and 2nd crystals.

The rotation stage for 1st crystal is mounted on a translation stage along the incident beam axis.

The two rotations and translation are computer linked.

Translation, ΔL , for the change of Bragg angle from θ_1 to θ_2 :

 $\Delta L = H(\cot 2\theta_1 - \cot 2\theta_2)$

JASS02

Fixed-Exit DCM: Mechanical Link

Energy Range

SPring-8 Standard DCM

Rocking Curve

Dynamical Theory of Diffraction

- Diffraction Width: 0.1~100 μ rad
- Peak Reflectivity ~ 1

Diffraction Width & Divergence of Incident Beam

Angular divergence of undulator light ~ Diffraction width

JASS02

Energy Resolution

Ω : beam divergence, ω : Diffraction width

Fixed-Exit DCM: Quantitative Consideration

$$y = AB = \frac{h}{2\sin\theta_B}$$
$$z = OB = \frac{h}{2\cos\theta_B}$$

$$(y^2 - h^2 / 4)(z^2 - h^2 / 4) = h^4 / 16$$

θ-*y*-*z* Mechanical Link

θ–y: Computer Control y-z: Mechanical Cam

Figure of Mechanical Cam

$$(y^2 - h^2 / 4)(z^2 - h^2 / 4) = h^4 / 16$$

SPring-8 Standard Double Crystal Monochromator

Angle Range: $3^{\circ} < \theta_{\rm B} < 27^{\circ}$ Offset: h = 30 mm Crystal Mounts for Undulator DCM

Alignment Stages for SPring-8 Standard DCM

Axis	abbr.	finest step	range
Main Axis	θ	1 μrad	0~30°
1st Xtal Translation	Y_1	1 μm	270 mm
Hight	Z_1, Z_2	0.1 μm	15 mm
Fine Tuning of Bragg Angle	$\Delta \theta_1, \Delta \theta_2$	2 0.05 μrad	$\pm 3^{\circ}$
			9 nrad (piezo)
Translation-1	X_1, X_2	0.05 μm	$\pm 5 \text{ mm}$
Azimuthal Angle	ϕ_1, ϕ_2	2.2 µrad	$\pm 5^{\circ}$
Translation-2	xx_1, xx_2	0.1 μm	$\pm 5 \text{ mm}$
Tilt-y (for Undulator Type)	Ty_1, Ty_2	0.1 µrad	$\pm 2^{\circ}$
Tilt-x (For Undulator Type)	Tx_1, Tx_2	0.1 µrad	±2 °
Tilt (for BM Type)	α_1, α_2	0.87 µrad	$15^{\circ} \sim +30^{\circ}$

Crystal Cooling

Power Load by SR

Deformation of Optical Elements Themal Drift of Optical Elements and Mechanical Components

Loss of Available Flux

Effective Cooling of Optical Elements

Crystal Cooling (Examples at SPring-8)

(1) Bending Magnet Beamlines

Incident Power Density: ~1 W/mm² @40 m Cooling Scheme: Indirect (Si/InGa/Water Cooled Cu), or Direct Fin-Cooling

(2) X-Ray Undulator Beamlines

(Planar Undulator, *N*= 140, *λ*u= 32mm) Incident Power Density: ~300 W/mm² @40 m Cooling Scheme:

Pin-Post Water Cooling+Rotated Inclined Geometry (\rightarrow 1 \sim 10 W/mm²), or Indirect Cryogenic Cooling with Liquid Nitrogen

(3) 27 m Long Undulator Beamline

(Planar Undulator, *N*= 781, λu= 32 mm) Incident Power Density: 580 W/mm² @58 m Cooling Scheme: Indirect Cryogenic Cooling with Liquid Nitrogen

Direct Water Cooling for SPring-8 BM Monochromator

JASS02

Rotated-Inclined Geometry + Pin-Post Water Cooling

Rotated-Inclined Geometry

 $\beta = 80^{\circ}$ for standard type

Glancing angle is set to 1 degree through ϕ -rotation

Reduction of power density to be $\sim 1/60$

Pin-Post Cooling

Cryogenic Cooling

Indirect Cooling with Liquid Nitrogen

Liquid Nitrogen Circulator with He Refrigirator

Figure of merit= Thermal Conductivity/Thermal Expansion Coefficient ~x100 compared with Room Temperature

Total Reflection Mirrors: Principle

Refractive index for x-rays is slightly less than 1;

$$n = 1 - \delta$$
 ($\delta \ll 1$)

 $\cos\theta_{\rm c} = \frac{n}{2}$

 $1 - \frac{\theta_{\rm c}^2}{2} = 1 - \delta$ $\theta_{\rm c} = \sqrt{2\delta}$

cos0

Glancing angle below a critical angle θ_c , total external reflection occurs

Snell's Law

Typical value of δ~10⁻⁵ at I~0.1 nm for Pt, Rh...

 $\theta_{\rm c}$ ~ several mrad

JASS02

Total Reflection Mirrors: Functions

(1) Higher Harmonics Rejection

cut higher harmonics from crystal monochromators (2) Beam Focusing/Collimation with Figured Mirrors sagittal focusing with cylindrical mirrors meridional focusing with cylindrical/elliptical mirrors point focusing with troidal/ellipsoidal mirrors beam collimation with parabolla mirrors

(3) Beam Deflection

switching of branch beamlines

Reflectivity (Calculation)

coating thickness = 50 nm, RMS surface roughness = 1nm

JASS02

Mirror Support

For 1m mirror in Bending Magnet Beamline; Vertical Deflection, Indirect Cooling, Meridional Bending

Example: SPring-8 Standard BM Beam Line

Optics	
Collimator Mirror:	vertical upward deflection, 1 m long, Si, Pt-coated flat mirror,
	indirect water cooling, bending support
	beam collimation to make parallel incident beam on crystal mono
DCM:	standard BM type, Direct water cooling with fin-crystal
Focusing Mirror:	vertical downward deflection, 1 m long, Quartz, Pt-coated flat mirror, vertical beam focusing at sample position
Inclination/Elevatio	n stage: to follow beam path

Estimation of Available Flux

Effective Bandwidth $\Delta E/E$

Photon Flux Estimation for BM Beam Line
Photon Flux Density @50 m from the source
(a)∼(c) 0.1% bandwidth
(d) Effective Bandwidth is included

Thank you for your attention.

Acknowledgement

We would like to thank to Dr. Shunji Goto to prepare some ppt materials for this presentation. Discussion with Drs. Shunji Goto, Kenji Tamasaku and Makina Yabashi is highly appreciated.