XAFS: Study of the local structure around an X-ray absorbing atom

T. Ohta, Univ. Tokyo, Japan

(1) Principle of XAFS
(2) Instrumentation
(3) XAFS spectral analysis
(4) XAFS applications
(5) New directions of XAFS
(1) Principle of XAFS
Phenomena caused by X-ray irradiation

- Diffracted X-rays
- Fluorescent X-rays
- Scattered X-rays
- Photoelectrons
- Desorbed ions

X-ray
X-ray absorption spectrum from Pt foil

wavelength
XAFS

X-ray Absorption Fine Structure:
Local electronic and geometric structures around
the x-ray absorbing atom

Absorption Coefficient

Photon Energy

NEXAFS
30-50 eV

EXAFS
50 - 1000 eV

Threshold
XAFS spectrum from an atom
XAFS spectrum from a diatomic molecule
X-ray absorption: Fermi’s Golden Rule

\[
\mu = \frac{4\pi^2 \omega_e^2}{c} N_a |\langle f|e \cdot r|i \rangle|^2 \rho(E_f)
\]

- \(i\): wave function of the initial state \(1s\)
- \(f\): wave function of the final state
- \(\rho(E_f)\): superposition of the ejected wave and back-scattered waves

\[
\chi(k) = \frac{\mu - \mu_0}{\mu_0} \text{ EXAFS function}
\]

Point atom, plane wave, and single scattering approximations

\[
\chi(k) = \sum_j A_j(k) \sin[2kr_j + 2\delta_j(k)]
\]

\[
A_j(k) = \frac{N_j |f(k,\pi)|}{kr_j^2} \exp(-2r_j/\lambda) \exp(-2\sigma^2 k^2)
\]
EXAFS oscillation

\[\chi(k) = \sum_i A_i(k) \sin(2kR_i + \phi_i) \]

\[k = \frac{p}{\hbar} = \frac{\sqrt{2m(E - E_0)}}{\hbar} \]

Ri: bond distance

\[\phi_i \] Phase shift
\[\chi(k) = \sum_i A_i(k) \sin(2kR_i + \phi_i) \]
Phase shift of the X-ray absorbing atom

k/A^{-1}
EXAFS amplitude

\[A_i(k) = \frac{N_i^*}{kR_i^2} |F_i(k)| \exp\left(-2\sigma_i^2 k^2\right) \exp\left(-2 \frac{R_i}{\lambda}\right) \]

- Effective Coordination number
- Debye-Waller factor
- Back scattering amplitude
- Electron mean free path
Backscattering Amplitude $F(k)$
EXAFS amplitude

High coordination number

Effective Coordination number

Low temperature

Debye-Waller factor

Back scattering amplitude

Electron mean free path

High Z scatterer

Short distance

\[
A_i(k) = \frac{N_i^*}{kR_i^2} |F_i(k)| \exp \left(-2\sigma_i^2 k^2 \right) \exp \left(-2 \frac{R_i}{\lambda} \right)
\]
Au K-EXAFS of Au foil

Absorption Coefficient (arb. units)

Photon Energy (eV)
EXAFS oscillation of Au K-edge

EXAFS function $k^2 \chi(k)$ (Å^{-3})

Wavenumber k (Å^{-1})

77K

278K
If the coordination number decreases,
If the bond distance increases,
(2) Instrumentation
Experimental method of XAFS

transmission method

X-rays

monochromator

Io

I

sample

Ion chamber

Data processing
Electron escape depth \(<50\) Å

Secondary electron

Fluorescent X-rays

X-ray escape depth \(>1000\) Å

Auger electron

photoelectron
Filter and solar slit

X-ray

Ionization chamber

sample
Cu K-XAFS of CuSO$_4$ 10mMol aq. solution
0.5 mm film

Transmission

6µm film

Fluorescence
Partial electron yield \rightarrow x-ray absorption of surface atoms

cryostat (liq. N_2 or liq. He)

hv
E

sample

partial e^- yield detector

Λ
(3) XAF S spectral analysis
EXAFS function

Fourier transform

Amplitude

R, ϕ
Back Fourier Transformation

EXAFS function

Amplitude

Envelope

Polarization

Temperature

Direction of Bond, Adsorption site

Coordination number

Bond stiffness

Kind of scatterer
Polarization Dependent EXAFS
K-absorption (1s \rightarrow p-like continuum)
Polarization Dependent EXAFS
K-absorption (1s → p-like continuum)
Temperature dependence

\[\chi(k) = \sum_j A_j(k) \sin[2kr_j + 2\delta_j(k)] \]

\[A_j(k) = \frac{N_j |f(k, \pi)|}{kr_j^2} \exp(-2r_j/\lambda) \exp(-2\sigma^2k^2) \]

\[\ln \frac{A(k, T_2)}{A(k, T_1)} \approx 2k^2 \left[\sigma^2(T_1) - \sigma^2(T_2) \right] \]
Determination of $\sigma^2(T)$

c-As

$$\ln \frac{A(k, T_2)}{A(k, T_1)} \approx 2k^2 \left[\sigma^2(T_1) - \sigma^2(T_2) \right]$$
What can we get from $\sigma^2(T)$

\[\sigma_i^2 = \langle [(u_i - u_0) \cdot \bar{R_i}]^2 \rangle \]

\[= \langle (u_i \cdot \bar{R}_i)^2 \rangle + \langle (u_0 \cdot \bar{R}_i)^2 \rangle + 2\langle (u_0 \cdot \bar{R}_i) \cdot (u_i \cdot \bar{R}_i) \rangle \]

\[\bar{R}_i = \frac{R_i - R_0}{|R_i - R_0|} \]

Einstein model

\[\sigma_i^2(T) = \frac{\hbar}{2\mu\omega_E} \coth \left[\frac{\hbar\omega}{2kT} \right] \]

Einstein frequency

\[f_E = c^2 \mu\omega_E^2 \]

\[\sigma_i^2 = \frac{\hbar}{2\mu\omega_E} \left[\coth \left(\frac{\hbar\omega}{2kT_2} \right) - \coth \left(\frac{\hbar\omega}{2kT_1} \right) \right] \]
c-As
As-As: 216 cm$^{-1}$

a-As
As-As: 234 cm$^{-1}$

c-As$_2$S$_3$
As-S: 332 cm$^{-1}$

g-As$_2$S$_3$
As-S: 330 cm$^{-1}$

c-As$_4$S$_4$
As-As: 222 cm$^{-1}$
As-S: 342 cm$^{-1}$
Data acquisition

Determine E_0, Convert from eV to k

Background subtraction and normalization

Multiply k^n

Fourier transformation

Fourier filtering

Back Fourier transformation

Curve fitting in real space

Model structure
X-ray energy (eV)

EXAFS $\chi(k)$

Atomic distance (Å)

EXAFS $\gamma(k)$
EXAFS analysis-1

\[\chi(k) = \sum_i A_i(k) \sin(2kr_i + \phi_i) \]

EXAFS \(\chi \) vs. wave number \(k \)

Fourier transformation

Amplitude vs. Distance

1st nearest

2nd nearest

3rd nearest

Amplitude vs. Distance \(r = n + \phi_i \)

Atomic distance

Phase shift

Amplitude

1st nearest

2nd nearest

3rd nearest
EXAFS analysis-2

EXAFS χ vs. k (wave number)

- Effective Coordination Number
- Debye-Waller factor
- Back scattering amplitude
- Direction of chemical bond
- Pair Potential Function
- Kind of scattering atom
Limitation and Improvement of XAFS theory

- Multiple scattering effect
 which is enhanced at XANES region and also at longer distance above 3 Å.

→ FEFF program developed by J. Rehr can be used for spectral simulation.

![Diagram](attachment:diagram.png)

- Shadowing effect
 - negligible
 - Non-negligible

Shading effect
Limitation and Improvement of XAFS theory

• **Vibrational anharmonicity**

 The formula assumes a Gaussian distribution.

 ➔ Cumulant expansion method has been developed to take into the anharmonicity, which gives the information of real bond distance, thermal expansion coefficients, radial distribution curve.

\[
\chi(k) = \frac{N}{kR^2} \text{Im} \left[f_{\text{eff}}(k, kR) \exp \left(2ikR + \sum_{n=2}^{\infty} \frac{(2ik)^n}{n!} C_n \right) \right]
\]

\[
= \frac{N}{kR^2} F_{\text{eff}}(k, kR) \exp \left[-2C_2 k^2 + \frac{2}{3} C_4 k^4 - \cdots \right] \sin \left[2kR + \phi_{\text{eff}}(k, kR) - \frac{4}{3} C_3 k^3 + \cdots \right]
\]

\[
C_2 = \langle (r - R)^2 \rangle \quad C_3 = \langle (r - R)^3 \rangle \quad C_4 = \langle (r - R)^4 \rangle - 3C_2^2
\]

where \(R = \langle r \rangle \)
(4) XAFS applications

• Catalysis
• Amorphous systems
• Material physics (High Tc, CMR,)
• Magnetic materials ⇐ XMCD
• Thin films and Surface science
• Environmental science
• Biological materials
(5) Challenge of XAFS

• Time-resolved XAFS spectroscopy

• Micro XAFS or Nano XAFS
Summary--Features of XAFS

• Applicable to any phase (amorphous, liquid, gas), surface/interface and biomaterials
• Measurable under various conditions
 → under high pressure, gaseous atmosphere, for real catalysis
• Polarization dependence → direction of the bond
• Temperature dependence → strength of any specific bond
• Combined with microbeam → local structure of a local area
• Pump-probe experiment → dynamics of local structure