JSPS Asian Science Seminar Synchrotron Science Seminar Diffraction for Materials Science

Makoto SAKATA (Nagoya University, JAPAN)

Very Short Review of Diffraction

Prof.W.H.Bragg

Bragg's Equation

$2d\sin\theta = n\lambda$

d : Lattice Spacing λ : Wavelength of X-ray θ : Bragg Angle

Calculation of *d* spacing from Lattice constants

$$d_{hkl} = \frac{\sin \beta}{\left(\frac{h^2}{a^2} + \frac{k^2}{b^2} \sin^2 \beta + \frac{l^2}{c^2} - \frac{2hl}{ac} \cos \beta\right)^{1/2}}$$
$$d_{hkl} = \frac{1}{\left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{1/2}}$$
$$d_{hkl} = \frac{a}{\left\{h^2 + k^2 + \left(\frac{a}{c}\right)^2 l^2\right\}^{1/2}}$$
Cubic:
$$d_{hkl} = \frac{a}{\left(h^2 + k^2 + l^2\right)^{1/2}}$$
$$d_{hkl} = \frac{a}{\left\{\frac{4}{3}(h^2 + hk + k^2) + \left(\frac{a}{c}\right)^2 l^2\right\}^{1/2}}$$

4

Fundamental Equation of
X-ray DiffractionStructure Factor
$$F(h) = \int \rho(r) e^{2\pi i h \cdot r} dv$$

UnitCell

$$\rho(\mathbf{r}) = \int F(h) e^{-2\pi i h \cdot \mathbf{r}} dh$$
$$= \frac{1}{v_c} \sum_{h} F(h) e^{-2\pi i h \cdot \mathbf{r}}$$

Fourier Transform of Crystal

 $I \propto |F|^2$

						•	•	•						
							•							
						•	•	•						
						•	٠							
					•	•	•		•					
					•		٠		•					
•		•	•	٠	-	•	•		•	•	•	٠		•
	•			•	٠	•	•	•	٠	•			•	
•		•	•	۰	•	•	•			•	•	•		•
			•		•		•		•					
					•	•	•	•	•		•			
				•		•								
						•	•	•						
							•							

Reciprocal Space

Crystal Structure Determination

Reciprocal Space

00

00

000

Crystal structure and Bragg Intensities

F -1

F -1

otron Powder Diffraction

- Powder Diffraction by Lab. Source
- Instrumentation of Synchrotron Powder Diffraction
- Importance of Synchrotron Powder Diffraction
 - in Materials Science

Principle of Powder Diffraction

Powder Diffraction By Bebye-Sherrer Camera

図1.12.2 粉末法の原理

Powder Diffraction

by Diffractometer

図1.12.3 ディフラクトメータの基本原理

Synchrotron Powder Diffraction (Photon Factory BL-3A Case)

Solar Slit

Fig.2 Solar slit with piling up the plates.

Multi-counter Powder Diffratometer BL-4B(PF)

The diffractometer inside the hutch of the BL-4B experimental station at the Photon Factory.

Synchrotron Powder Diffractometer with multicounters

PF BL4B2 SESAME

Parallel Beam Diffraction by SR

19

Difference between Synchrotron and Lab. Data

Equatorial Line (2 θ =0 ° ~80 °)

The Large Debye-Scherrer Camera at SPring-8 BL02B2

Powder Sample Sealed in Silica Glass Capillary (0.2mm int. diam.)

Synchrotron Powder Data of CeO₂

Variations of FWHM of CeO₂ with 2θ for SPring-8 & Lab. Source

Full Width at Half Maximum

Measurement of Weak Reflection by SR

An Example

Low and High Temperature Powder Diffraction

15K~300K **Displex System**

80K~300K Dry N₂ Gas Flow System Dry N₂ Gas Flow System

Be Window 20 Stage Collimator -11 adjustor ring Displex

300K~1000K

Displex

Low Temperature N₂ Gas Flow System

Stability of Temperature Control

Metal Insulator Phase transition of V_xTi_{1-x}O₂

Identification of Impurity Peak

Debye Scherrer Pattern on IP

Reconstruction by MEM

Data

Reconstruction

Fig. 1 The picture of a running car and the deconvoluted one by the Maximum Entropy Method. (quated from Silver et al.(1990)⁸⁾)

Fundamental Equation of
X-ray DiffractionStructure Factor
$$F(h) = \int \rho(r) e^{2\pi i h \cdot r} dv$$

UnitCell

$$\rho(r) = \int F(h) e^{-2\pi i h \cdot r} dh$$
$$= \frac{1}{v_c} \sum_{h} F(h) e^{-2\pi i h \cdot r}$$

Charge Densities of Silicon (110) Plane

MEM Charge Density Analysis

$$F_{cal}(k) = \sum_{r} \rho(r) \exp[2\pi i kr]$$

Electron densities at bond midpoint

C	•
D	

Reference	Density[e/ų]
Spackman (1986)	0.617(6)
Yang & Coppens (1974)	0.69
Yin & Cohen (1983)	0.565
Yin & Cohen (1982)	0.59
Wang & Klein (1981)	0.58
Kenton & Ribarsky (1981)	0.50
Zunger (1980)	0.60
Hamann (1979)	0.55
Chelikowsky & Cohen (1974)	0.65 Ref
MEM density (R.T.)	0.6 Sna

Diamond

Reference	Density[e/Å ³]
Spackman (1991)	1.57(6)
Orlando, et al. (1990)	1.96
Rodriguez, et al. (1987)	1.61
van Camp, et al. (1986)	1.53
Denteneer & van Haeringen	1.54
(1985) Jones & Lewis (1984)	1.54
MEM density (R.T.)	1.4

Applications

If time is allowed,

□ Fullerene compounds

 \square VO₂ system

Perovskite-type Manganite : (**R**,**A**)_{1+n}**Mn**_n**O**_{3n+1}

n=2

Direct Observation of Orbital Order of Manganites

To reveal a structure-property relationship

SESAMETakata et al. JPSJ Lett. 68(1999)21944

The Crystal and Magnetic Structure of NdSr₂Mn₂O₇

The Rietveld Fitting Result of NdSr₂Mn₂O₇ at R.T.

The Rietveld Fitting Result of NdSr₂Mn₂O₇

Structure Parameters of NdSr₂Mn₂O₇ from Rietveld Analysis

I4/mm	т	R.T.	19K		
Lattice	а	3.85029(6)	3.85015(7)		
Parameters(Å)	С	19.9540(3)	19.8867(4)		
	Mn-O1	1.934(1)	1.928(1)		
Bond Lengths(Å)	Mn-O2	2.009(4)	1.968(4)		
	Mn-O3	1.925181(7)	1.925086(5)		

The MEM Charge Densities of NdSr₂Mn₂O₇ for (200) Plane 0.0~4.0[e Å -3],step:0.2 [e Å -3]

19

The Equi-contour($0.6e^{\text{Å}-3}$) Density Map of the MEM Charge Densities of NdSr₂Mn₂O₇ at R.T.

The Equi-contour(0.6e $^{A-3}$) Density Map of the MEM Charge Densities of NdSr₂Mn₂O₇ at 19K

