High Resolution XPS study of oxide layers grown on Ge substrates using synchrotron radiation

N. Tabet (a), M. Faiz (a), N. M. Hamdan (b) and Z. Hussain (c)

(a)Surface Science Laboratory, Physics Department, KFUPM, Saudi Arabia.

(b) Physics Department American Univ. of Sharjah, Sharjah UAE.

(c) Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720.

E-mail: natabet@kfupm.edu.sa

Outline

1. Conventional XPS monitoring of the oxide growth

2. High resolution XPS analysis

- Native Oxide
- Oxide layers obtained by dry oxidation

XPS Monitoring of the Oxide growth

$$I = I_0 \exp \left[\frac{\delta}{\lambda \sin \theta}\right]$$
$$\lambda (Ge \ 2 \ p) = 5 .3 \ ML$$

Conventional XPS anal; ysis

N. Tabet et al. 2001

XPS at ALS – Berkeley (Synchrotron radiation)

Beam line 9.3.2

hv = 300-700 eV

Energy Resolution: $E/\Delta E \sim 10000$

High Resolution XPS using Synchrotron radiation

ALS-Berkeley, 2000

Native oxide on CP4 etched surface

Native oxide on CP4 etched surface

- 1. Native oxide
- 2. After Ar Sputering, 1keV Ar+, PAr=10⁻⁵mbar, 50min.
- 3. 100min.
- 4. 1.5keV, 60min.

Valence Band

- 1. Native oxide
- 2. After Ar+ Sputtering, 1.5keV, PAr=10⁻⁵mbar, 160min. Then T=315°C, 20min.

Oxidized Ge(011) surface T= 380°C, t = 25min. $PO_2 = 400Torrs$

- 1: As oxidized surface
- 2-8: After successive Ar+ Sputtering cycles, hv = 650 eV.
- 9: hv = 300 eV

Surface Depletion Region and Core Level Energies

Oxidized Ge(011) surface

$T=380^{\circ}C$, t=25min. PO2=400Torrs

As oxidized surface
After successive Ar+ Sputtering cycles, hv= 650eV.

Conclusion

1. High density of Surface States at Ge/GeO2 interface and band bending confirmed

2. Lower oxidation state of Ge observed under sputtering.

3. Carbides-like XPS signal at the

Ge/oxide interface to be investigated

Thank you

Study #2 Dopant Segregation at Germanium Surface

EBIC/Grain Boundary

SEM

EBIC

EBIC/Grain Boundary

SEM

EBIC

EBIC image of Dopant segregation

N. Tabet, BIAMS, 2000

Ar etched surface

CP4 etched Ge surface

Ge2p3/2 Ge3d

Binding Energy

Segregation kinetics

Surface Depletion Region and Core Level Energies

