High Resolution X-Ray Scattering

E. Ercan Alp

Advanced Photon Source

Argonne National Laboratory, Argonne, Illinois 60439

JASS'02, October 19-28, 2002 Amman, Jordan

W. Sturhahn, T. Toellner,
J. Zhao, H. Sinn,
C. L'abbé, A. Alatas,
A. Said, S. Hwang, H. Yavas

Advanced Photon Source Argonne National Laboratory

Y. Shvydko, H.C. Wille
M. Lucht, M. Lerche
E. Gerdau, K. Geske,
H.-D. Rüter

Hamburg University,

R. Röhlsberger G. Wortmann W. Keune

F. Parak, K. Achterhold U. Van Bürck, W. Potzel H. Franz Rostock Paderborn Duisburg

Münich HASYLAB What is high resolution in the hard x-ray regime ?

Resolution power, $R = E/\Delta E$

This talk is focused for the following energy and resolution range:

7 < E < 30 keV 10^{-9} < Δ E < 10^{-3} eV 10^{7} < R < 10^{13}

The beamline 3-ID at the APS is built for this energy range to study collective excitations in condensed matter and hyperfine interactions for nuclear resonance scattering

Inelastic X-Ray Scattering in the Synchrotron Era

Key concepts in crystal Monochromatization

Angular acceptance Reflectivity Energy bandpass Asymmetric diffraction Debye-Waller factor Low-order vs high order reflections Extinction length DuMond diagram Dispersive vs non-dispersive arrangements: (++) or (+-)

$$\boldsymbol{b} = -\frac{\sin(\theta_B - \alpha)}{\sin(\theta_B + \alpha)}$$

b < 1 asymmetric, beam enlarges b = 1 symmetric, $\alpha = 0$ b > 1 asymmetric beam shrinks

Collimation by asymmetric Bragg diffraction

Does not select energy per se Beam leaves in the same direction

energy selective, beam Leaves in a different direction

 $d_{hkl} > d_{h'l'k'}$ higher order reflections have smaller d $n\lambda = 2dsin\theta$, smaller d for a given λ means higher Bragg angle

Si (800), 4 crystal set for 9.4 keV

energy dispersive, artificially linked "channel-cut" in (+ - - +) geometry (T. Toellner, et al, 2002, Yabashi, et al (2001, PRL)

Angular deviation from Bragg angle

Si (800), 4 crystal set for 9.4 keV

New monochromators with artificially linked, dispersive channel-cut configuration

⁸³Kr, E= 9.401 keV, ∆E= 1.0 meV

^{57}Fe , E= 14.4126 keV, ΔE =1.1 meV

3-ID-B APS

Advances in high energy resolution monochromators in the new century at the APS , 3-ID beamline

Nuclear Resonance and Fallout in ⁵⁷Fe-decay

Time structure at APS (ca. 2002)

Detection of nuclear decay

Bunch purity at the APS (2002)

NR-IXS: What do we learn ?

Applications in biology, geology, and materials science to measure thermodynamic, magnetic and elastic parameters are derived from the fundamental phonon properties.

phonon density of state specific heat average force constant vibrational entropy Debye temperature

velocity of sound mean displacement bulk and shear moduli magnetic phase transitions Gruneisen constant

Classical thermodynamical quantities and phonon density of states

In the Harmonic Approximation (i.e. interatomic forces are linear in atomic displacement) the thermodynamic functions are additive functions of the normal mode frequencies. Thus, they are expressible as averages over frequency distribution function, $g(\omega)$, or phonon density of states.

1.Helmholtz Free Energy

$$F_V = 3RNk_BT \int \ln\left\{2\sinh\left(\frac{\hbar\omega}{k_BT}\right)\right\} g(\omega)d\omega$$

2. Vibrational Energy

$$F_{V} = 3RN\frac{\hbar}{2}\int \ln\left\{\coth\left(\frac{\hbar\omega}{k_{B}T}\right)\right\} \omega \cdot \mathbf{g}(\omega) \mathrm{d}\,\omega$$

3. Specific heat

$$C_{\rm P} = 3RNk_B \int \left(\frac{\hbar\omega}{2k_BT}\right)^2 \operatorname{csch}\left(\frac{\hbar\omega}{k_BT}\right) \, \mathsf{g}(\omega) \mathsf{d}\,\omega$$

4.Entropy

$$S = 3RNk_B \int \left\{ \left(\frac{\hbar\omega}{2k_BT} \right) \coth\left(\frac{\hbar\omega}{k_BT} \right) - \ln\left[2\sinh\left(\frac{\hbar\omega}{k_BT} \right) \right] \right\} g(\omega) d\omega$$

NR-IXS studies on Proteins and Model Compounds

Collaborations

S. Durbin, T. Sage, B. Rai, G. Wyllie, R. Scheidt, E. Prohofsy

Purdue University Northeastern University University of Notre Dame

K. Achterhold, F. Parak, U. van Bürck, W. Potzel Technische Universität München

Hemoglobin

Myoglobin

Binding of the heme to the protein

The heme molecule

Upon binding a ligand, Fe is pulled into the heme plane, putting a stress on the bond to the protein.

In response, the protein changes conformation, altering the environment of other hemes in Hb.

This simple shift in a single Fe atom plays <u>the</u> central role in the biological functioning of hemoglobin.

How does this couple to protein dynamics?

Polarization of phonon modes in 2-MeHIm-TPP

Single crystal grown by: M.K. Ellison

energy (meV)

Porphyrin model compounds

J. T. Sage, et al, J. Phys. Cond. Matt, 13 (2001) 7707

The heme doming coordinate is directly Involved in oxygen-binding reaction.

In proteins, it is important to know whether It acquires a global character.

Doming modes are expected in the range of 6-8 meV.

Porphyrin model compounds mimic the heme group found at the active site of many proteins involved in biological usage of oxygen and nitric oxide.

2MeHIm-TPP	: Methyl-Hydrogen-Imidazole tetra phenyl porphyrin
OEP	: Octo ethyl porphyrin
ТРР	: Tetra phenyl porphyrin

: Tetra phenyl porphyrin

Changes in the position of the heme iron atom upon oxygenation lead to conformational changes in the hemoglobin molecule.

Heme Proteins

Heme proteins are exemplary systems to study the influence of protein dynamics on physiological functions.

Most reactions in proteins take place at the position of the heme group. The access to and reactivity of heme group is influenced b the dynamics of the entire surrounding of the protein structure.

Fe-ligand modes such as Fe-C, Fe-His can be identified.

vibrational spectrum.

In cytochrome-f, the porphyrin group is more tightly attached to the surrounding protein.

The low energy modes at 5 meV is reduced compared to deoxygenated or carboxylized myoglobin.

OuickTime PICI

$PT \subset$

T. Sage, S. Durbin K. Achterhold, F. Parak

<u>QuickTime PICT</u>

QuickTime PICT

FeTPP-NO

N 42

doming

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a Video decompressor are needed to see this picture.

Phenyl, out-of-plane

QuickTime™ and a Video decompressor are needed to see this picture.

Geology and high pressure physics

<u>Pvs. depth for Earth</u>

High pressure set-up with K-B mirrors

Fe_{92.5}Ni_{7.5}

H.K. Mao, V. Sturzhkin (Carnegie Institute) W. Sturhahn (APS)

Phonon-magnon coupling in FeO

Phonon dispersion relations with magneto-elastic coupling

$$(\omega - \omega_m)^2 (\omega - \omega_s)^2 = \frac{gk^2 B_2^2 \Omega}{2\rho M_0}$$

$$\omega_m = \operatorname{spin} \operatorname{frequency} = \Omega g M_0 \left(\beta + \alpha k^2 \right)$$

- $\omega_{\rm s} = {\rm sound} \, {\rm frequency},$
- $\Omega = 11 \text{ meV} (\text{from Raman data})$
- $M_0 =$ magnetic moment of the sublattice
- $B_2 = -2.5 \times 10^{10} \text{ erg/cm}^3$
- g = gyromagnetic ratio

 $\alpha, \beta, \gamma =$ exchange interaction constants

- $\mathbf{k} = \mathbf{wave vect or}$
- $\rho = \text{density}, 6.2 \text{ g/cm}^3$

FIG. 4. Model for the magnetoelastic coupling in FeO. (a) The interacting transverse phonon and magnon branches. Noninteracting bare frequencies are shown with dashed lines, the dispersion branch for magnons is calculated according to [31], the phonon dispersion was approximated by $E(Q) = 2Q_0 v_s / \pi \sin[(\pi/2) (Q/Q_0)]$ using the sound velocity 3.4 km/sec at Q = 0. (b) Calculated sound velocity including magnetoelastic coupling (solid line) and without magnetoelastic coupling (dash-dotted line).

Measurement of partial vibrational density of

states on both elements in the same compound

In collaboration with D. Brown, Northern Illinois University

Crystalline-amorphous transformation

Crystalline and amorphous Fe₂Tb, raw data

Determination of sound velocity

Sn impurities in Pd

Sound velocity

$$D(E) = \frac{V}{2\pi\hbar^3 c_s^3} E^2$$

for cubic crystals

$$c_{s} = \left[2\pi \left(D(E)/E^{2}\right)\right]^{/3} \frac{a(m)}{\hbar(eV.s)}$$

where a is the lattice constant.

For Pd

 $a = 389 \ pm$ $D(E) / E^2 = 8.3 \ THz / a(m) = 3228 \ m/sec$ tabulated value = 3070 m / sec

Theory and experiment

Kr under pressure in a DAC cell J. Zhao, T. Toellner, W. Sturhahn, J. Tse (NRC)

Large change in the speed of sound and similarly large change in thermal expansion are among the anomalous behavior of clathrate hydrates.

Progress in NRS between 1985-2002

Isotope	Tabulated E(eV)	Measured E(eV)	∆E (neV)	Г (nsec)
¹⁸¹ Ta	6238	6215.5	0.067	9800
¹⁶⁹ Tm	8401	8401.3	114	4
⁸³ Kr	9401	9403.5	3.1	147
⁷³ Ge	13263		0.15	2953
⁵⁷ Fe	14413	14412.5	4.67	97.8
¹⁵¹ Eu	21532	21541.4	47	9.7
¹⁴⁹ Sm	22490	22496	64.1	7.1
¹¹⁹ Sn	23870	23879.5	25.7	17.8
¹⁶¹ Dy	25655	25651.4	16.2	28.2
¹²⁹ I	27770		27.2	16.8
⁴⁰ K	29560	29834	107	4.25
¹⁴⁵ Nd	67100		6.8	67.1
⁶¹ Ni	67400	67419	89	5.1
¹⁹³ Ir	73000		72.3	6.3
¹³³ Cs	81000		71.5	6.4
⁶⁷ Zn	93300		0.049	9200

Measuring wavelengths and lattice constants with Mossbauer wavelength standard

Higher accuracy ($\Delta E/E \sim 10^{-13}$ possible)

Reproducible independent of temperature, pressure, composition, and other parameters

Available between 6-100 keV range at more than a dozen energies

Y. Shvydko, et al, Phys. Rev.Lett., 45 (2000) 495 J. Synchrotron Rad. 9 (2002) 17

Wavelength & energies of Mossbauer isotopes determined at a synchrotron radiation source

isotope	E (eV)	λ (Å)	δλ/λ (10-7)
⁵⁷ Fe	14412.497(3)	0.86025474(16)	1.9
¹⁵¹ Eu	21541.418(10)	0.57556185(27)	4.7
¹¹⁹ Sn	23879.478(18)	0.51920811(39)	7.4
¹⁶¹ Dy	25651.368(10)	0.48334336(19)	4.0

Ge

Normal Incidence Diffraction, NID, beamline

First scientific results from NID

Fabry-Perot Interferometer for μ eV

Free spectral range, $E_f = \frac{hc}{2d_g}$,

 d_g : gap between two mirrors

Spectral width $\Gamma = \frac{E_f}{F}$ where F, finesse $F = \frac{\pi \sqrt{R}}{(1-R)}$,

R : Reflectivity

with R = 0.85, F = 19.3, $d_g = 50$ mm, $\Gamma = 0.73 \ \mu eV$

Fabry-Perot interferometer

Y. Shvydko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H.D. Rüter (Hamburg) E. E. Alp, R. Khatchatryan (APS), Phys. Rev. Lett (accepted) 2002