Spectromicroscopy

An introduction to instrumentation and some experimental examples

Ulf Johansson

MAX-lab, Lund University

Spectromicroscopy = Spectral and spatial information

Spectral information from small areas of the sample and Image contrast obtained from different spectral features

Focusing optics

- Reflection with mirrors and diffraction with zone plates are most often used for focusing of VUV- and Soft X-ray radiation.
- Refraction in lenses can't be used for VUV and Soft Xrays due to strong absorption and low refractive index.

Imaging by focusing optics (mirrors)

Imaging by focusing with a Zone Plate (ZP)

- Efficiency ~10 % in first order diffraction for soft X-rays
- Focal spot determined by the outermost zone width.
 - ~20 nm focal spot size has been achieved.
- Diameter ~30 μm to mm range, depending on application
- · Focal distance varies with photon energy
 - Sample and zone plate must be moved during photon energy scan
- One or a few millimetres working distance

Due to a small numerical aperture

$$f >> \frac{n\lambda}{2} \Longrightarrow r_n \approx \sqrt{n\lambda f}$$

See "Soft X-rays and Extreme Ultraviolet Radiation" David Attwood, Cambridge University Press, 1997

Spatial resolution measurements

Examples from the MAX-lab SPEM

JASS'02, Spectromicroscopy 2002-10-24

Imaging by projection

Photoemission Electron Microscope (PEEM)

Elmitec PEEM. Ref:http://www.elmitec-gmbh.de

PEEM properties

- Very high spatial resolution
 - better than 20 nm with photoelectrons and secondary electrons.
 This depends strongly on the energy spread of the emitted photoelectrons.
- Easy change of magnification, field of view 2 150 μ m
- Requires flat and conducting samples
- Gracing incidence photon beam can lead to shadow effects
- Needs homogeneous illumination
- Can be equipped with electron energy band-pass filter

Spectro Microscope for All Relevant Techniques – The SMART instrument at Bessy II

E. Bauer / Journal of Electron Spectroscopy and Related Phenomena 114-116 (2001) 975-987

Some examples from different microscopes

- Imaging X-ray microscope using zone plates
- Scanning transmission X-ray microscope using zone plates
- Scanning photoelectron microscope using an ellipsoidal mirror
- X-ray fluorescence and μ-XANES microscope using Kirkpatrick-Baez objective
- Photoemission Electron Microscope (PEEM)

X-ray imaging microscope

With λ between 40 Å (C K-edge) to 23 Å (O K-edge) wet samples can be investigated (The so called "Water window")

Manganese-Eating Microbes

By B.P. Tonner (principal investigator) and K. Nealson (University of Wisconsin-Milwaukee), and W. Meyer-Ilse and J. Brown (Berkeley Lab's Center for X-Ray Optics), using the XM-1 microscope at Beamline 6.1.2. ALS.

Scanning Transmission X-ray Microscopy

From:ALS, beamline 7.0.1, Data courtesy of H. Ade and A. Garcia (North Carolina State University).

The VUV Scanning Photoelectron Microscope (SPEM) at MAX-lab

Data acquisition at the SPEM

Photoelectron spectromicroscopy

Temperature induced void growth in SiO₂ overlayers on Si(100)

- · Voids in the oxide layer grow with annealing time
- All voids are circular and of approximately the same size
- Yellow indicate SiO₂ rich areas, dark areas show Si from the substrate

U. Johansson, Thesis, Lund University, 1997

Void growth in SiO₂ overlayer on Si(100)

MAX-lab

Video crated in MATLAB

JASS'02, Spectromicroscopy 2002-10-24

Beam induced sample damage

$Ca(Sr)CuO_2 T_c=84K$

120x120 μ m² surface images of the same area, hv=43.18eV. The 20 μ m diameter bright spots are a result of beam-induced damage after just one scan (1min acquisition time) at each point.

From A. Zakharov, MAX-lab

X-ray fluorescence and $\mu\text{-XANES}$

From SRN, p. 19, Vol 14, N0. 4, 1998

Pentacene growth on glas and Si(100)

- · Experiments were done with a Merqury lamp
- \bullet Field of view 65 μm
- Images taken every minute

Pentacane growth on glass

Pentacane growth on Si(100)

From: http://www.research –ibm.com

Magnetic materials studied by Dichroism

Fourier Transform Infrared Microscopy

Image from G.L.Carr and G.P. Williams, in "Accelerator-Based Infrared Sources and Applications", SPIE Conf. Proc. Vol. 3135, p. 51, 1997

Chemical Imaging of Living Cells and Cellular Processes

) Chemical Imaging of Mitotic Cells N. Jamin, P. Dumas (LURE), J.L. Teillaud (Institute Curie), G.L. Carr, G.P Williams (NSLS)

N. Jamin, P. Dumas, J. Moncuit, W.H. Fridman, J.-L. Teillaud, G.L. Carr and G.P. Williams, "Highly resolved Chemical Imaging of Living Cells by using Synchrotron Infrared Microspectrometry", Proceedings of the National Academy of Science, 95 4837 (1998).

nsis

Summary

- X-ray microscopy is a maturing field
 - Today a veriaty of spectroscopic methods are used
 - Photoemission spectroscopy
 - NEXAFS / XANES
 - Fluorescence
 - Linear and Circular Dichroism
 - Rapid development of focusing devices
 - Mirror systems
 - Zone plates
- IR-microscopy has found new applications
 - Diffraction limit reached due to the high brilliance of SR

Soft X-Ray Microscopy, PUB-786, ALS

Acknowledgments

Prof. Ralf Nyholm, MAX-lab Dr. Alex Zakharov, MAX-lab

