Synchrotron based structural genomics project targeted to protein transport and posttranslational modification

Soichi Wakatsuki

Photon Factory, IMSS, KEK, Tsukuba, Japan

Outline

- 1. New national project of Protein 3000
- 2. Target oriented structural genomics on posttranslational modification and transport of proteins
- 3. A case study of human GGA proteins in the vesicle transport of lysosomal proteins modified with mannose 6-phosphate
- 4. Beam line development and high-throughput

R&D

Two synchrotron facilities and PX groups in Japan

National project of determining 3000 structures in 5 years from FY 2002

The proposal of the Japanese universities

- Initiative of the university researchers
- Strong collaboration with biochemistry, molecular and cell biology, medicine, pharmacology departments of the universities
- Key technology developments
- Increase the overall efficiency of structure determination in Japan by a factor of 10
- Determining 500 biologically important protein structures
- Education of next generation structural biologists

Target oriented structural genomics consortia of universities and national institutes

Network Committee for Protein Analyses 500 structures/5 years, HT R&D

Transcription and Translation

Development and Cell Differentiation

Protein Transport and Modification

Signal Transduction

Higher Order Biological Functions

Brain and Neurology

Metabolism

Concept of a S.G. Research Consortium

Tsukuba Structural Biology Consortium

Proposal of a Target Oriented Structural Genomics Consortium: Intracelluar Transport and Posttranslational Leader Visit (KEK)

Core facilities (1)

Core facilities (2)

X-ray crystallographic structural analysis

Faculty of Pharmaceutical Sciences, Kyoto University (Hiroaki Kato) Nagaoka University of Technology (Takamasa Nonaka) Showa University (Noabutada Tanaka)

NMR structural analysis

Nagoya City University (Koichi Kato)

Functional analysis : post-translational modification Faculty of Pharmaceutical Sciences, Kyoto University (Toshisuke Kawasaki) Glycosyltransferases expressed in nervous system : GICAT-P, GICAT-S Faculty of Medicine, Osaka University (Naoyuki Taniguchi) Glycosyltransferases for carcinogenesis and immune system : GnT-III. GnT-V Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (Yoshifumi Jigami) Metabolic system of sugar nucleotide : Och1, YND1 Nagoya City University (Koichi Kato) Quality control and transport of proteins : $Fc\gamma$ receptor II Faculty of Science, Osaka University (Sumihiro Hase) Glycosyltransferases expressed in early embryo · FucT1 FucT2

Core facilities (3)

Functional analysis : intracellular protein transport

Faculty of Pharmaceutical Sciences, Kanazawa University (Kazuhisa Nakayama)
Transport between Golgi and Iysosome : GGA, BIG
Cancer Research Institute, Kanazawa University (Hiroshi Ohno)
Intracellular protein transport : AP complexes
The Institute of Physical and Chemical Research (Akihiko Nakano)
Vesicle transport : Sar1p, Sec12p
Center for Integrative Bioscience, Okazaki National Research Institute (Masayuki Murata)
Visualization of protein transport of semi-intact cells
Faculty of Pharmaceutical Sciences, Kyoto University (Hiroaki Kato)
Peroxisome protein import : Pex19p, PMP70

Bioinformatics

Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute (Kei Yura)

TLO

Tsukuba Liaison (Akira Tasaki)

Galactose

Sialic acid

Application of 3-D structure of glycosyltransferases

Development of new drugs for regulation of glycosyltransferase activity

- Control of tumor metastasis
- Control of inflammation
- Organ xeno-transplantation
- Highly active glycoprotein drugs
- Defense against infective diseases

The current model of GDP-mannose transport and utilization in the Golgi-apparatus

N-acetylgulcosimine transfereses

HNK-1 Carbohydrate Epitope (CD57)

- is recognized by HNK- 1 (human natural killer -1) monoclonal antibody
- is found in insect and human cells, and is localized in nerve adhesion molecules (NCAM, P0, L1, MAG etc.) and neuroglycolipids (SGGL-1,-2).
- is expressed in specific phase and position during development and growth of nerve tissues.
- is used as marker of nerve development.

```
GlcAT-P, S :
enzymes required
for the synthesis
of HNK-1
oligosaccharide
epitopes
```


Changes of cells which express HNK-1 sugar chain antibody

Elongation of neurite

GlcAT-P KO mouse (defective of HNK-1 oligosaccharide synthesis)

Decrease of long term potentiation (LTR) at hippocampus CA1

Inhibition of cell adhesion HNK-1 negative cell HNK-1 positive cell L1 L1 N-CAM N-CA

Microheterogeneity and high mobility of oligosaccharides

Difficulty of structural analysis

GN-M	GN-M
M-GN-GN	M-GN-GN
GN-M	GN-M
G-GN-M	G-GN-M
GN-M	M-GN-GN
GN-M	GN-M
GN-M M-GN-GN G-GN-M G-GN-M G-GN-M	GN-M G-GN-M G-GN-M G-GN-M G-GN-M G-GN-M
GN-M	GN-M
GN-M-GN-GN	GN-M-GN-GN
GN-M	GN-M
G-GN-M	G-GN-M
GN-M-GN-GN	GN-M-GN-GN
GN-M	GN-M

GN-M GN-M GN-M-GN-GN G-GN-M G-GN-M GN-M-GN-GN

Analysis of dynamics of glycoproteins by NMR

H

ppm

Atomic level observation of dynamics of sugar chains by NMR

Lysosomal function depends on membrane traffic

Structural and functional analysis of peroxisome inserted membrane protein and related protein transport system (Pex3p, Pex6p, Pex19p, ABC transporter PMP70)

Photon Factory Structural Biology Building (completed in April 2001)

Lysosomal Function Depends on Membrane Traffic

Treatment of lysosomal deseases

Fabry Disease and Enzyme Replacement Therapy

Fabry disease : A disease caused by mutation of α -galactosidase gene, which degrades enzymatic activity of the hydrolase in lysosome leading to accumulation of glycolipids

Vesicle transport from the ER to the Golgi apparatus

Lippincott-Schwartz, J. (1998) MBC 9, 1617

http://www.hms.harvard.edu/news/clathrin/

Schematic representation of the domain structure of GGA1

VHS: Vps27p/Hrs/STAM Domain

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor g Ear Homology Domain

GGA1 KRFHDEVGKFRFLNELI-KVVSPKYLGSRTSEKVKNKILELLYSWTVGL---PEEVKIAEAYOMLKKOG 143 GGA2 EKFHSEVAKFRFLNELI-KVLSPKYLGSWATGKVKGRVIEILFSWTVWF---PEDIKIRDAYOMLKKOG 159 GGA3L RRFHNEVGKFRFLNELI-KVVSPKYLGDRVSEKVKTKVIELLYSWTMAL---PEEAKIKDAYHMLKRÖG 142

STAM1 KIFHLEVCSRDFASEVS-NVL------NKGHPKVCEKLKALMVEWTDEFKNDPOLSLISAMIKNLKEOG 139

TOM1 HRFHVLVASQDFVESVLVRTILPK---NNPPTIVHDKVLNLIQSWADAFRSSPDLTGVVTIYEDLRRKG 148

OTVHDEVANKOTMEEL -- KELLK -- -- ROVEVKVRNKILYLIÖAWAHAFRNEPKYKVVODTYOIMKVEG 139 Hrs

TOM1 VGÖRIEKATDGSLOSEDWALNMEICDIINETEEGPKDALRAVKKRIVGNKNFHEVMLALTVLETCVKNCG 82 FERLLDKATSQLLLETDWESILQICDLIRQGDTQAKYAVNSIKKKV-NDKNPHEALYALEVMESVVKNCG 76 Hrs

STAM1 FDODVEKATSEMNTAEDWGLILDICDKVGOSRTGPKDCLRSIMRRV-NHKDPHVAMOALTLLGACVSNCG 77

GGA3L LESWLNKATNPSNROËDWEYIÏGFCDOINKELEGPOIAVRLLAHKI-OSPOEWEALOALTVLEACMKNCG 77

LELWLNKATDPSMSEQDWSAIONFCEOVNTDPNGPTHAPWLLAHKI-OSPOEKEALYALTVLEMCMNHCG 94 GGA2

LEARINRATNPLNKELDWASINGFCEOLNEDFEGPPLATRLLAHKI-OSPOEWEAIOALTVLETCMKSCG 78 GGA1

From S. A. Tooze, Science, vol. 292, 1 June, 2001

FEBS 26327 FEBS Letters, on line publication on 9 July 2002 FEBS Letters 524 (2002) 183–187

Memapsin 2 (β-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2

Xiangyuan He^a, Wan-Pin Chang^a, Gerald Koelsch^{a,b}, Jordan Tang^{a,c,*}

^a Protein Studies Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA ^bZapaq, Inc., Oklahoma City, OK 73104, USA ^cDepartment of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104. USA

Protein source	Peptide name	Sequence
A. Alignment of C-terminal sequen	nces ^a	∠ Pi
Memapsin 2	M2	-CLRQQHDDFADDISLLK
Mannose-6-phosphate receptor Cation-Independent	CI-MPR	-CT KLVS FHDDS D EDLLH I
Cation-Dependent		-DDQLGEESEERDDHLLPM
Sortilin		-TNKSGYHDDDS D EDLLE
LKP3		-PPCSPMLEASDDEALLVC
Memapsin 1	M 1	-CQRRQRDPEVVNESSLVRHRWK

bar=0.1 mm

Crystallization method:hanging drop vapor diffusionProtein conc.:13 mg / mlPrecipitant:17 % (w/v) PEG3350, 0.2 M KH2PO4Buffer:0.1 M Tris-HCI (pH 7.5)Temperature:20 °C

Crystal of Human GGA1 VHS domain

Crystallization of Native VHS domain of human GGA1 and complex with M6PR peptide

	Native	Complex
Protein conc.:	13 mg / ml	9 mg / ml
Precipitant:	17 % (w/v) PEG3350, 0.2 M KH ₂ PO ₄	14 % (w/v) PEG3350, 0.2 M NH₄I
Buffer:	0.1 M Tris-HCI (pH 7.5)	0.1 M Tris-HCI (pH 7.5)
G1S : peptide:	-	1:5
Temperature:	20 °C	20 °C
		M6PRpeptide: SFHDDSDEDLLHI

Crystallographic Data of Native VHS domain of human GGA1 and complex with M6PR peptide

	Native	Complex
Crystal system:	Tetragonal	Orthorhombic
Space group	P4 ₃ 2 ₁ 2	$P2_{1}2_{1}2_{1}$
Cell dimensions:	a = 55.12, c = 105.51 Å	<i>a</i> = 55.2, <i>b</i> = 65.9, <i>c</i> = 101.6 Å
Number of molecule:	1 / asymmetric unit	2 / asymmetric unit
Vm:	2.39 Å ³ / Da	2.57 Å ³ / Da
Solvent content:	48.4 %	52.1 %

Diffraction Data Collection Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

	Native	Complex	
X-ray source:	Synchrotron PF-BL6B	ALS 5.0.2	
Wavelength:	1.0 Å	1.0 Å	
Temperature:	Room temperature	100 K	
Resolution:	15 – 2.1 Å	30 –2.0 Å	
Total reflections:	39,125	167,862	
Unique reflections:	9,580	25,975	
Completeness:	95.6 % (89.4)	99.6 % (99.3)	
$R_{\text{merge}}(I)$:	4.4 % (28.8)	6.7 % (35.9)	
I / sigma:	25.8 (4.7)	7.1 (1.9)	

Values in parentheses are for the highest resolution shell; (2.17 - 2.1 Å) for the native and (2.11 - 2.0 Å) for the complex

Refinement Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

Native	Complex
15.0 – 2.1	30 - 2.0
	24,632 (99.7%)
	2,246
-	103
	206
-	6
20.3	22.7
	22.5
26.1	26.0
	38.85
0.039	0.011
3.128	1.313
	Native 15.0 – 2.1 - 20.3 26.1 0.039 3.128

2.1A structure of the VHS domain of a human GGA protein in the apoform

Protein preparation started on 23 April, 2001 Structure solved on 28 May, 2001

Monday 5 PM, 13 August, complex crystals FedExed to ALS Wednesday 1 PM, 15 August, 1.8A data set collected at ALS!

Fig.1

Ribbon diagram of VHS domain of human GGA1 complex with M6PR peptide. The peptide molecule is shown as a ball-and-stick model colored according to atom type (nitrogen, blue; carbon, yellow; oxygen, red).

Fig. 3

Stereo view of the omit Fo – Fc electron density map of M6PR peptide (chain C). The map is contoured at 3.0 σ . The peptide molecule is shown as a ball-and-stick model colored by atom type (nitrogen, blue; carbon, yellow; oxygen, red) and bond color is shown as black. The protein (chain A) residues, which interaction with the peptide (chain C) is shown as a ball-and-stick model.

Superposition of the <u>native GGA1 VHS domain (green)</u> and <u>its complex with the ACLL peptide (blue)</u>. The peptide molecule is shown as a ball-and-stick model.

Structural changes of the GGA-VHS are rather small upon binding of the MP6R signal peptide

Summary on GGA1 VHS complexed with CI-M6PR

- Similar to Tom1 and Hrs, GGA1 VHS domain forms a super helix with 8 α -helices.
- There are no drastic changes in the superhelical structure upon binding of the cation independent mannose 6-phosphate receptor (CI-M6PR) C-terminal peptide except for the linear movement of Helix 8 by 1.3 Å towards the N-terminal end of the helix and upward flipping of Lys87, Phe88, Arg89, Asn92, and Lys131.
- Helices 6 and 8 and adjoining loops are responsible for recognition of the acidic dileucine motif of M6PR C-terminal peptide.
- The Asp7^M of CI-M6PR is mainly recognized by basic residues of the protein whereas Leu10^M and Leu11^M find themselves in tight packing with hydrophobic residues and hydrophobic parts of Tyr102 and Lys96.
- CI-MPR specific recognition is achieved by the interaction between His12^M and Ile13^M to the adjoining loops of Helices 6 and 8.
- Lys101 of the C-terminal loop of Helix 6 is expected to play a crucial role in recognizing glutamic acid at the C-terminal end of sotilin.
- Taken together, the structure of GGA1 VHS domain in complex with CI-M6PR shows the intricate recognition of M6P receptor in the vesicle transport of soluble proteins destined for lysosomes in the cell. This is the first example of protein-protein interaction of a VHS domain.

M6PR recognition by GGA1-VHS

The two-hybrid experiments of the mutants confirm the importance of specific interactions between the peptide and the protein.

VHS domain only

VHS domain + M6PR peptide

GGA1-VHS M6PR complex structure: Acknowledgement

Institute of Biological Sciences and Gene Experiment Center, University of Tsukuba, Japan

H. Takatsu & K. Nakayama

ALS, Berkeley, CA, USA

T. Earnest

Photon Factory Structural Biology Group

T. Shiba, T. Nogi, N. Matsugaki, M. Suzuki, N. Igarashi, M. Kawasaki, & R. Kato

Diffraction Data Collection Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

	Native	Complex	
X-ray source:	Synchrotron PF-BL6B	ALS 5.0.2	
Wavelength:	1.0 Å	1.0 Å	
Temperature:	Room temperature	100 K	
Resolution:	15 – 2.1 Å	30 –2.0 Å	
Total reflections:	39,125	167,862	
Unique reflections:	9,580	25,975	
Completeness:	95.6 % (89.4)	99.6 % (99.3)	
$R_{\text{merge}}(I)$:	4.4 % (28.8)	6.7 % (35.9)	
I / sigma:	25.8 (4.7)	7.1 (1.9)	

Values in parentheses are for the highest resolution shell; (2.17 - 2.1 Å) for the native and (2.11 - 2.0 Å) for the complex

NATURE |VOL 415 | 21 FEBRUARY 2002

Structural basis for acidic-clusterdileucine sorting-signal recognition by VHS domains

Saurav Misra*, Rosa Puertollano \dagger , Yukio Kato \dagger , Juan S. Bonifacino \dagger & James H. Hurley*

* Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA

[†] Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA

Structural basis for recognition of acidic-cluster dileucine sequence by GGA1

Tomoo Shiba*†‡, Hiroyuki Takatsu‡§, Terukazu Nogi*, Naohiro Matsugaki*, Masato Kawasaki*, Noriyuki Igarashi*, Mamoru Suzuki*, Ryuichi Kato*, Thomas Earnest||, Kazuhisa Nakayama§ & Soichi Wakatsuki*

* Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
† Foundation for Advancement of International Science (FAIS), Tsukuba, Ibaraki 305-0062, Japan
§ Institute of Biological Sciences and Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
|| Advanced Light Source, Berkeley, Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
‡ These authors contributed equally to this work

pp 933-937

.....

"Single-handed recognition of a sorting traffic motif by the GGA proteins", T. Kirchhausen, *Nature Structural Biology*, April 2002 Vol. 9 pp 241 – 244.

Schematic representation of the domain structure of GGA1

VHS: Vps27p/Hrs/STAM Domain

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor g Ear Homology Domain

Residues 677-822 of human GGA1 (γ1-ear domain) were expressed in *E. coli*

Figure 2 (Nogi et al. Nature Structural Biology, vol. 9, 527, July 2002)

Table 1 Crystallographic data

Data set	Native	KAu(CN) ₂ for SIRAS		SeMet for MAD			
				Remote		Peak	Edge
Crystal data							
Space group	P4 ₃ 2 ₁ 2		P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2			
Cell dimensions							
a = b (Å)	62.13		62.24		62.06		
c (Å)	147.87		147.58		147.20		
Data collection statistics							
Beam line	BL-44XU, SPring-8	BL-44)	XU, SPring-8	BL-6A, PF		BL-6A, PF	BL-6A, PF
Wavelength (Å)	0.900		0.900		0.9600	0.9778	0.9785
Resolution range (Å)	57.0-1.8		57.0-1.8		40.0-2.6	40.0-2.6	40.0-2.6
Outer resolution shell (Å)	1.89-1.80		1.89-1.80		2.73-2.60	2.73-2.60	2.73-2.60
Observations	372969		214570		129917	129874	129501
Unique reflections	27518		27823		9485	9476	9476
Completeness (%)	99.2 (99.2)		99.9 (100.0)		99.9 (99.3)	99.9 (99.2)	99.9 (99.2)
<i> </i> /σ	7.0 (2.7)		4.9 (1.6)		7.3 (2.5)	7.9 (2.8)	7.7 (2.7)
R _{svm} (%)	6.4 (21.9)		9.3 (34.3)		9.6 (30.7)	8.7 (27.3)	9.0 (28.2)
R _{anom} (%)			4.4 (13.5)		4.5 (9.3)	5.4 (9.8)	2.9 (7.4)
Phasing statistics							
¥		Numer of sites	1	Numer of sites	6		
		R _{eullie} (centric/acentric)	0.72/0.84	Refined $\Delta f'$	-3,793	-7.098	-8.829
		Phasing power (centric/acentric)	0.93/1.08	Refined f"	3 402	4 521	1.562
		FOM	0.34	FOM	0.55	1.021	1.002
		FOM after DM	0.86	FOM after RESOLVE	0.64		
Refinement statistics							
Resolution (Å)	20.0-1.8						
Outer resolution shell (Å)	1 85-1 80						
Buest (%)	22 6 (27 1)						
P (0/2)	24.7 (21.7)						
Number of pen H stome	24.7 (31.7)						
	1000						
Protein	1090						
vvaler	134						
Rmsd from ideality	0.000						
Bonas (A)	0.009						
Angles (deg.)	1.35						
Average <i>B</i> -factors (A ²)							
Protein	23.98						
A-monomer	19.97						
B-monomer	27.92						
Water	27.84						

The First MAD experiment using the new set-up of BL6A

SeMet for MAD Remote P4 ₃ 2 ₁ 2 62.06 147.20	Peak First 2 seen i	Edge 23 a.a. are not in the map		
BL-6A, PF 0.9600 40.0-2.6 2.73-2.60 129,917 9,485 99.9 (99.3) 7.3 (2.5) 9.6 (30.7) 4.5 (9.3)	BL-6A, PF 0.9778 40.0-2.6 2.73-2.60 129,874 9,476 99.9 (99.2) 7.9 (2.8) 8.7 (27.3) 5.4 (9.8)	BL-6A, PF 0.9785 40.0-2.6 2.73-2.60 129,501 9,476 99.9 (99.2) 7.7 (2.7) 9.0 (28.2) 2.9 (7.4)		The first structure determined of a transport protein from a
Numer of sites Refined Δ <i>f</i> ' Refined <i>f''</i> FOM FOM after RESOLVE	6 -3.793 3.402 0.55 0.64	-7.098 4.521	-8.829 1.562	Se-MAD experiment using the new set-up of BL6A (T. Nogi et al., <i>Nature Structural</i> <i>Biology vol. 9, 527, July</i> 2002)

Binding assay using gamma-1 ear mutants

Isolated mutations; hydrophobic residues

Figure 1 (Nogi et al. Nature Structural Biology vol. 9, 527, July 2002)

Figure 3 (Nogi et al. Nature Structural Biology vol. 9, 527, July 2002)

CD-MPR lumenal domain with a Lysosomal Enzyme, β-Glucuronidase Roberts et al. Cell, Vol. 93, 639–648, 1998

Figure 7. Molecular Modeling of a Complex between the CD-MPR and a Lysosomal Enzyme, β -Glucuronidase

The refined structure of the CD-MPR and the published coordinates of β -glucuronidase (PDB accession code 1BHG) were used. The CD-MPR dimer (blue/cyan and red/rose ribbons) are shown in the same orientation as in Figure 4A. The tetrameric β -glucuronidase protein is shown. The oligosaccharide attached to Asn-173 is also shown (gold ball-and-stick model). The model was generated by overlapping the terminal mannose residue of the β -glucuronidase oligosaccharide with the CD-MPR Man-6-P substrate. The location of the membrane is also indicated (gray spheres).

Balraj Doray, Kerry Bruns, Pradipta Ghosh, and Stuart A. Kornfeld

Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif

PNAS vol. 99, pp.8072-8077. (11 June 2002)

Cooperation of GGAs and AP-1 in Packaging MPRs at the Trans-Golgi Network

Balraj Doray,¹*† Pradipta Ghosh,¹* Janice Griffith,² Hans J. Geuze,² Stuart Kornfeld¹‡

The Golgi-localized, γ -ear–containing, adenosine diphosphate ribosylation factor–binding proteins (GGAs) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) in the Golgi and have an essential role in lysosomal enzyme sorting. Here the GGAs and the coat protein adaptor protein–1 (AP-1) were shown to colocalize in clathrin-coated buds of the trans-Golgi networks of mouse L cells and human HeLa cells. Binding studies revealed a direct interaction between the hinge domains of the GGAs and the γ -ear domain of AP-1. Further, AP-1 contained bound casein kinase–2 that phosphorylated GGA1 and GGA3, thereby causing autoinhibition. This could induce the directed transfer of the MPRs from GGAs to AP-1. MPRs that are defective in binding to GGAs are poorly incorporated into AP-1–containing clathrin-coated vesicles. Thus, the GGAs and AP-1 interact to package MPRs into AP-1–containing coated vesicles.

Science, vol 297, 1700, 6 September 2002

GAE Ear Hinge -linge GAT σ1 Head γ VHS μ1 С Ν N

GGA1 hinge region interacts with the γ-ear domain of AP-1

Doray,,, Kornfeld, Science, vol 297, 1700, 6 September 2002

