

Hard X-ray Studies of Thin Films and nanoclusters

Najeh M Jisrawi *Birzeit University*

2002/11/21

Najeh M Jisrawi

Hard X-ray Studies of Thin Films and nanoclusters

- Overview
 - Hard X-ray Characteristics
 - In situ studies of superconductors
 - Studies of battery electrodes
- Hydrogen in Pd/Nb multilayers and bimetallic electrodes
- Hydrogenated metallic clusters

Hard X-ray Study of Superconductors

Collaborators: T. Thurston, J. McBreen S. Mukerjee, M. Suenaga

2002/11/21

Najeh M Jisrawi

LiMn₂O₄ Example

T.R. Thurston et.al. Appl.Phys. Let **69**, 194(1996).

Industrial Prototype with X-rays going through casing and battery material

FIG. 1. 2θ scan taken on a LiMn₂O₄-carbon cell when it was charged to 2.25 V. Peaks arising from aluminum, copper, binding materials, and the electrolyte are labeled. The rest of the indexed peaks are from the LiMn₂O₄ cathode material.

Hydrogen in Metal Films

Thin Film In Situ Electrochemical Cell

Euler cradle of B2 at Hasylab

مامعد برنس

2002/11/21

Phase Changes in Nb

Y-H Phases

Collaborators:

M. Suleiman, A. Pundt, R. Kirchheim, H. Teichler

S. AbdulHadi and I. Ladadwa

Magic Numbers

2002/11/21

Synchrotron X-rays

Najeh M Jisrawi

Surface and Subsurface!

Table 1 The total number of atoms contained in k closed shells, with the added atoms according to the increase of k, and the ratio of the number of surface to volume atoms .

Shell Index k	1	2	3	4	5	6	7	8	9	10	11	12
New added atoms N_s^*	1	12	42	92	162	252	362	492	642	812	1002	1212
N_{ss}^{*}		1	12	42	92	162	252	362	492	642	812	1002
${N_C}^*$			1	13	55	147	309	561	923	1415	2057	2869
Total No. of atoms $N_{\rm v}$	1	13	55	147	309	561	923	1415	2057	2869	3871	5083
Ratio $\frac{N_s}{N_{\nu}}$ %	100	92.3	76.4	62.6	52.4	44.9	39.2	34.8	31.2	28.3	25.9	23.8
Ratio $\frac{N_s + N_{ss}}{N_v} \%$	100	100	98.2	91.2	82.2	73.8	66.5	60.3	55.1	50.7	46.9	43.6

Ns: number of surface atoms, Ns: number of subsurface atoms, Nc: number of "core" atoms and Nv: total number of atoms in the cluster.

Melting Properties

Table 4 The melting temperature of the bulk for palladium using different types of EAM potentials, the first column is of this work, the other three are of previous work. The experimental value of the melting of palladium is 1825K.

Potential	Melting temperature of the bulk [38](K) ^a	Latent heat (KJ/mol)	Latent heat (mev/atom)	
EAM (Foils, Daw and Baskes)	1480 ^a 1390 ^b	7.79*	80.7	
EAM (Voter)	1588* 1520±150 °	9.96*	103.2	
EAM (PDW3) *	1728*	10.2*	105.7	
EAM (PDW5) *	1828*	9.84*	102.0	
Results of this work [figures (3.2-4) and (3.2-7)]	1399	~7.12 8.99	~74 93.2	
Experimental	1825	16.7 ^d	173.1	

a Wolf, Mansour, Lee, and Ray work using many types of embedded atom potentials

(PDW3), (PDW5) are two methods developed by this group.

b Foiles and Adams, from the pervious reference.

c Ercolessi and Voter, from the pervious reference.

d Iida and Guthrie, from the previous reference.

Saja AbdulHadi et.al.

Contractor and								
 41 92.91 Nb Niobium								
Electron Binding Energies in electron volts								
K 1s 18,986.	L₁2s 2,698.	L ₂ 2p ₁₂ 2,465.	L ₃ 2p _{3/2} 2,371.	M ₁ 3s 466.6	M ₂ 3p _{1/2} 376.1	M ₃ 3p _{3/2} 360.6	M ₄ 3d _{3/2} 205.0	M ₅ 3d _{5/2} 202.3
][]		
	N ₁	4s	N ₂ 4p _{1/2}	N ₃ 4) _{3/2}			
	50). 4	32.6 30		8			
K and L shell emission lines in electron volts								
Ka ₁	Ka ₂	Кβ	1	Læ ₁	La ₂	Lβ1	Lβ2	Lyı
16,615.1	16,521.0	18,62	2.5 2,	,165.89	2,163.0	2,257.4	2,367.0	2,461.8
http://xdb.lbl.gov/Section1/Periodic_Table/Nb_Web_								

http://xdb.lbl.gov/Section1/Periodic Table/Y Web data.htm