SESAME

Synchrotron Light for Experimental Science and Applications in the Middle East

JSPS Asien Science Seminar

Synchrotron Radiation Science

Dieter Einfeld

Amman, October 2002

WEST ELEVATION

Introduction

Based on the workshops held in the Middle East Region and other activities of the SESAME Scientific Committee, the scientific program for SESAME includes:

> Structural molecular biology

- Molecular environmemental science
- Surface and interface science
- Micro mechanical devices
- >X-ray imaging
- > Archaeological microanalysis
- > Material characterization
- Medical applications

Most of these applications require hard x-rays up to 20 keV photons.

Characterization of Synchrotron Radiation

 $Flux = Photons / (s \bullet BW)$

Fluxdensity = Flux / A_s , [Photons / (s • mm² • BW)]

Brilliance = Flux / ($A_s \bullet \Delta \Phi \bullet \nabla \psi$), [Photons / ($s \bullet mm^2 \bullet mrad^2 \bullet BW$)]

Performance of a Light Source

The performance of a synchrotron light source is given by:

- ★ the brilliance of the emitted radiation
- the overall length of the straight sections
- ★ the emitted photon spectrum

The brilliance:

The brilliance is proportional to the photon flux per area of the source size, and opening angle of the radiation. Both factors are proportional to the emittance of the stored electron beam.

To increase the brilliance further more one introduces wigglers and undulators to enlarge the number of source points.

Performance of a Light Source

Length of the straight sections:

According to the attraction of the synchrotron radiation, a light source should provide the radiation simultaneously to a lot of users. Hence the performance of a synchrotron light source is proportional to the number of useable long straight sections.

The photon spectrum:

The different users are asking for a special spectrum range. The highest photon energy of the spectrum from the bending magnet, the wiggler and the undulator is proportional to the square of the energy of the stored electrons. So, the performance of the machine should also proportional to the energy.

The following parameters of the machine determine the performance of a synchrotron light source:

- the emittance
- the overall length of the straight sections

History of SESAME

- ➡ Idea to upgrade BESSY I (1997)
- ➡ Proposal for SESAME to UNESCO DG (1999)
- **•** Establishment of Interim Council
- Setting up of Advisory Committees (international)
- Green Book (Technical Proposal) (1999)
- ➡ Site Decision Al-Balqa Applied Universit
- ➡ Training Programme initiated (Oct. 2000)
- ➡ Financing of BESSY I dismantling (Aug 2000)
- ➡ Appointment of Technical Director (Sept. 2001)
- ➡ New Advisory Committees (from region)(Dec. 2001)
- ➡ Shipping of BESSY I components (May 2002

History of SESAME

Green Book Design:

- ➡ Photon energies of 20 KeV are required
- ➡ 7.5 Tesla super conducting wiggler is available
- ➡ To reach 20 keV photons, the energy has to be increased to 1 GeV
- ➡ The bending magnets have to be modified (from 1.5 to 1.87 Tesla)
- All magnets (quadrupoles and sextupoles) from BESSY I should be used
- ➡ The number of straight sections have to be increased

Solution:

- ► New arrangement of magnets (Circumference = 100.4 m)
- \Rightarrow Energy = 1 GeV, emittance = 50 100 nm rad,
- ➡ Number of straight sections = 6 (only 3 for wigglers)

Conclusion:

The design of the "Green Book" has to make a lot of compromises. With the result, that the specifications can not compete with other synchrotron light sources.

➡ New design, White Book

History of SESAME

White Book Design:

- ➡ Design of building based upon ANKA
- **Building:** ANKA plus annexes
- ➡ Lengths of beam lines around 30 meter
- ➡ Maximum circumference of the storage ring is 126 meter
- ➡ The energy was fixed to 2 GeV
- ➡ New arrangements of magnets (TME optic)
- ➡ 16 straight sections (8 long & 8 small)
- **•** Emittance is around 17 nmrad
- ➡ Radiation spectrum from bendings goes up to 12 keV
- ➡ Radiation spectrum from wiggler goes up to 24 keV
- ➡ Repetition frequency of booster will changed to 1 Hz

Radiation Characteristics

Flux of the synchrotron radiation from the bending magnets: Version SES_1_1: Green book, 1GeV, 1.87 Tesla, 400 mA; version SES_4_2: 2GeV, 1.35 Tesla, 400 mA

Machine Radiation Characteristics

Flux of the synchrotron radiation from the wiggler for the versions: SES_1_2 and SES_4_1.

Radiation Characteristics

Brilliance of the synchrotron radiation from the bending magnets for the versions SES_1_2 and SES_4_1

Radiation Characteristics

Brilliance of synchrotron radiation from the wigglers of the versions SES_1_2 and version SES_4_1

Radiation Characteristics

Brilliance of the synchrotron radiation from the bending magnets for the versions SES_1_2 and SES_4_2

Machine Radiation Characteristics

Brilliance of the synchrotron radiation from the wigglers for the versions SES_1_2 and SES_4_2

Radiation Characteristics

Machine

	E (Gev)	2	
Machine	C (m)	119.51	
	ε _x (nm.rad)	17.3	
	Q_{x}, Q_{z}	7.272, 5.216	
	ξ _x ξ _z	-13.608, -14.889	
	β_x, β_z, η_x (m)	12.6, 1.14, 0.52 (in 8 Sec.) 8, 2.47, 0.4 (in the others)	
Parameters			
	of the SESAME		
800 MeV Booster Synchrotron		Storage Ring	
	# BMs	16	
	B _o (T), k	1.35, 8.327 (k=-0.341)	
	# Quads	48 (3 families)	
	# Sext.	64 (4 families)	
	# Str. Sections	16 (8 x 3 m + 8 x 3.12 m)	

One unit Cell

Arrangement of Magnets adjacent to Dipole Number One

Dipole Number Two

Long Straight Section of the SESAME Storage Ring

Short Straight Section of the SESAME Storage Ring

Lengths there nes and Beam

Front End of the Beam Lines at ANKA

LIGA-I Beam Line at ANKA

LIGA-II Beam Line at ANKA

LIGA-III Beam Line at ANKA

Diffraction Beam Line at ANKA

Fluorescence and Topography Beam Line at ANKA

Protein Crystallography Beam Line at ANKA

X-Ray Absorption Beam Line at ANKA

Infrared Beam Line at ANKA

General View of the Building and the college

General layout of the SESAME Site

North Elevation

South Elevation

West Elevation

East Elevation

Technical Building

Space within the Ground Floor

