Diffraction T. Ishikawa

Part 1 Kinematical Theory

11/20/2002

Introduction

What I intend to give in this lecture:

- Basic Concepts of "Diffraction"
 - * Simpler Case: Kinematical Theory (Part 1)
 - * Complicated Case: Dynamical Theory (Part 2)
- The speaker has been worked on experimental dynamical diffraction for 25 years. Now, he is in charge of X-ray optics for SPring-8, world's largest 3rd generation synchrotron facility in Japan.

X-Rays as Shorter Wavelength Electromagnetic Wave

Scattering of x-rays by a point charge (Thomson Scattering)

 $\boldsymbol{E}_{radiation} = \frac{1}{4\pi\varepsilon_0 c^2} \frac{e(\boldsymbol{\ddot{x}} \times \boldsymbol{r}) \times \boldsymbol{r}}{r^3}$ $I_0 = \sqrt{\frac{\mathcal{E}_o}{\mu_o}} E_0^2$ Point Charge, mass=m. $I = \sqrt{\frac{\varepsilon_o}{\mu}} \left(\frac{e^2 \sin \alpha}{4\pi m rc^2} E_0\right)^2 = r_0^2 \sin^2 \alpha \left(\frac{I_0}{r^2}\right)$ charge=e $r_0 = \frac{e^2}{4\pi\varepsilon_0 mc^2}$: Classical Electron Radius **Electromagnetic Plane Wave** $= 2.81776 \times 10^{-15} m$ $\boldsymbol{E} = \boldsymbol{E}_0 \exp\left[i\left(\boldsymbol{K}_o \cdot \boldsymbol{r} - \omega t\right)\right]$ **Lorentz Force** $\boldsymbol{B} = \frac{\boldsymbol{k}}{\omega} \times \boldsymbol{E}_0 \exp\left[i\left(\boldsymbol{K}_o \cdot \boldsymbol{r} - \omega t\right)\right] = \frac{\hat{\boldsymbol{k}}}{c} \times \boldsymbol{E}$ $m\ddot{\mathbf{x}} = e(\mathbf{E} + \dot{\mathbf{x}} \times \mathbf{B})$ $|\dot{x}| \ll c \Rightarrow \ddot{x} = -\frac{e}{E}$

Scattering of x-rays by distributed charge (1/2)

 K_0 : Incident Wave Vector

 K_S : Scattered Wave Vector

 $\rho(x)$: Number Density of Electron

 $\rho(x)$
 K_0
 μ
 K_0
 χ

Contribution from a volume element d^3x at x

$$d\boldsymbol{E}_{radiation}^{distribution} = \boldsymbol{E}_{radiation}^{point charge} \rho(\boldsymbol{x}) \exp\left[-i(\boldsymbol{K}_{s} - \boldsymbol{K}_{o}) \cdot \boldsymbol{x}\right] d^{3}\boldsymbol{x}$$

Scattering of x-rays by distributed charge (2/2)

 $\boldsymbol{E}_{radiation}^{distribution} = \boldsymbol{E}_{radiation}^{point charge} \iiint \rho(\boldsymbol{x}) \exp\left[-i(\boldsymbol{K}_s - \boldsymbol{K}_o) \cdot \boldsymbol{x}\right] d^3 \boldsymbol{x}$

3D Fourier Transform of Charge Density

Scattered Intensity

$$I = I^{single} \left| \iiint \rho(\mathbf{x}) \exp\left[-i(\mathbf{K}_s - \mathbf{K}_o) \cdot \mathbf{x}\right] d^3 \mathbf{x} \right|^2$$
$$= \frac{r_o^2 \sin^2 \alpha}{r^2} I_o \left| \iiint \rho(\mathbf{x}) \exp\left[-i(\mathbf{K}_s - \mathbf{K}_o) \cdot \mathbf{x}\right] d^3 \mathbf{x} \right|^2$$

Electronic Charge Distribution in Crystal

N

b

M

L

C

Crystal = 3D Regular Stacking of Molecules

Translation Symmetry

Fourier Transform of the Electronic Charge Distribution in Crystal

$$\int_{crystal} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3 \mathbf{x} = \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \int_{unitcell} \rho(\mathbf{x} + l\mathbf{a} + m\mathbf{b} + n\mathbf{c}) e^{-i\mathbf{K}\cdot(\mathbf{x} + l\mathbf{a} + m\mathbf{b} + n\mathbf{c})} d^3 \mathbf{x}$$
$$= \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^{-i\mathbf{K}\cdot(\mathbf{x} + l\mathbf{a} + m\mathbf{b} + n\mathbf{c})} \int_{unitcell} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3 \mathbf{x}$$
$$= \left(\frac{1-e^{-i\mathbf{K}\cdot\mathbf{a}}}{1-e^{-i\mathbf{K}\cdot\mathbf{a}}}\right) \left(\frac{1-e^{-i\mathbf{M}\mathbf{K}\cdot\mathbf{b}}}{1-e^{-i\mathbf{K}\cdot\mathbf{b}}}\right) \left(\frac{1-e^{-i\mathbf{N}\mathbf{K}\cdot\mathbf{c}}}{1-e^{-i\mathbf{K}\cdot\mathbf{c}}}\right) \int_{unitcell} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3 \mathbf{x}$$

JASS02

Atomic Scattering Factor, Structure Factor

Atomic Scattering Factor

$$f^{(a)}(\boldsymbol{K}) = \int_{atom} \rho_{atom}^{(a)}(\boldsymbol{x}) e^{-i\boldsymbol{K}\cdot\boldsymbol{x}} d^3\boldsymbol{x}$$

Structure Factor

$$F(\mathbf{K}) = \int_{unitcell} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3\mathbf{x} = \sum_{atom} e^{-i\mathbf{K}\cdot\mathbf{R}_n} f^{(a)}(\mathbf{K})$$

$$\int_{crystal} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3 \mathbf{x} = \left(\frac{1-e^{-iL\mathbf{K}\cdot\mathbf{a}}}{1-e^{-i\mathbf{K}\cdot\mathbf{a}}}\right) \left(\frac{1-e^{-iM\mathbf{K}\cdot\mathbf{b}}}{1-e^{-i\mathbf{K}\cdot\mathbf{c}}}\right) \left(\frac{1-e^{-iN\mathbf{K}\cdot\mathbf{c}}}{1-e^{-i\mathbf{K}\cdot\mathbf{c}}}\right) \int_{unitcell} \rho(\mathbf{x}) e^{-i\mathbf{K}\cdot\mathbf{x}} d^3 \mathbf{x}$$
$$= \left(\frac{1-e^{-iL\mathbf{K}\cdot\mathbf{a}}}{1-e^{-i\mathbf{K}\cdot\mathbf{a}}}\right) \left(\frac{1-e^{-iM\mathbf{K}\cdot\mathbf{b}}}{1-e^{-i\mathbf{K}\cdot\mathbf{b}}}\right) \left(\frac{1-e^{-iN\mathbf{K}\cdot\mathbf{c}}}{1-e^{-i\mathbf{K}\cdot\mathbf{c}}}\right) F(\mathbf{K})$$

Laue Function (1/3)

Laue Function (2/3)

12

Laue Function (3/3)

Scattering from a crystal is appreciable only when $K \cdot a = 2\pi h$ $K \cdot b = 2\pi k$ h, k, l; integer $K \cdot c = 2\pi l$ Then,

$$I_{crystal} = \frac{r_o^2 \sin^2 \alpha}{r^2} I_o \left(LMN \right)^2 \left| F(\mathbf{K}) \right|^2$$

Reciprocal Lattice (1/3)

Scattering from a crystal is appreciable only when $K \cdot a = 2 \pi h$ $K \cdot b = 2 \pi k$ $K \cdot c = 2 \pi l$ h, k, l: integer

Base Vectors of Reciprocal Lattice

$$\boldsymbol{a}^{*} = \frac{2\pi \left(\boldsymbol{b} \times \boldsymbol{c}\right)}{\boldsymbol{a} \cdot \left(\boldsymbol{b} \times \boldsymbol{c}\right)}, \boldsymbol{b}^{*} = \frac{2\pi \left(\boldsymbol{c} \times \boldsymbol{a}\right)}{\boldsymbol{b} \cdot \left(\boldsymbol{c} \times \boldsymbol{a}\right)}, \boldsymbol{c}^{*} = \frac{2\pi \left(\boldsymbol{a} \times \boldsymbol{b}\right)}{\boldsymbol{c} \cdot \left(\boldsymbol{a} \times \boldsymbol{b}\right)}$$
$$\boldsymbol{a}^{*} \cdot \boldsymbol{a} = 2\pi, \boldsymbol{a}^{*} \cdot \boldsymbol{b} = 0, \boldsymbol{a}^{*} \cdot \boldsymbol{c} = 0$$
$$\boldsymbol{b}^{*} \cdot \boldsymbol{b} = 2\pi, \boldsymbol{b}^{*} \cdot \boldsymbol{a} = 0, \boldsymbol{b}^{*} \cdot \boldsymbol{c} = 0$$
$$\boldsymbol{c}^{*} \cdot \boldsymbol{c} = 2\pi, \boldsymbol{c}^{*} \cdot \boldsymbol{a} = 0, \boldsymbol{c}^{*} \cdot \boldsymbol{b} = 0$$

Reciprocal Lattice (2/3)

Reciprocal Lattice (3/3)

Reciprocal Lattice Vector g = ha * + kb * + lc * h, k, l; integer $K = g \Rightarrow K \cdot a = 2\pi h, K \cdot b = 2\pi k, K \cdot c = 2\pi l$

When the scattering vector, $K = K_s - K_o$, corresponds to a reciprocal lattice vector, strong diffraction may be observed (necessary condition, but not a sufficient condition).

Ewald Sphere

Forbidden Reflection (1/2)

K=g is a necessary condition for observing diffraction, but not a sufficient condition... If F(K)=0, then $I_{crystal} = 0$ even when K=g.

Example 1, Body Center Cubic Lattice (bcc)

Forbidden Reflection (2/2)

Example 2, Face Center Cubic Lattice (fcc)

 $F(\boldsymbol{g}) = f^{a}(\boldsymbol{g}) \left\{ 1 + \exp(i\pi(h+k)) + \exp(i\pi(k+l)) + \exp(i\pi(l+h)) \right\}$

h,*k*,*l* all odd or all even $\Rightarrow F(g) = 4f^{a}(g)$ Otherwise $\Rightarrow F(g) = 0$ (Forbidden Reflection)

Special Topics

What we can measure in diffraction/scattering experiment = Intensity

All phase information is lost!

Non-Crystalline Charge Distribution:

$$I = \frac{r_o^2 \sin^2 \alpha}{r^2} I_o \left(\iiint \rho(\mathbf{x}) \exp\left[-i\mathbf{K} \cdot \mathbf{x}\right] d^3 \mathbf{x} \right)^2 = \sqrt{\frac{\varepsilon_o}{\mu_o}} \mathbf{E} \cdot \mathbf{E}$$
$$\mathbf{E}^* : \text{complex conjugate of } \mathbf{E}$$
$$\mathbf{f} \qquad E = \frac{r_o \sin \alpha}{r} \sqrt{I_o \sqrt{\frac{\mu_o}{\varepsilon_o}}} \iiint \rho(\mathbf{x}) \exp\left[-i\mathbf{K} \cdot \mathbf{x}\right] d^3 \mathbf{x}$$
$$= \sqrt{I \sqrt{\frac{\mu_o}{\varepsilon_o}}} \exp(i\varphi)$$

is obtained, we can calculate $\rho(x)$ by Fourier inversion.

Iterative Phase Retrieval (Jianwei Miao & David Sayre)

X-ray intensity data: Phase Information is Lost!

Scattered pattern in Far Field with Coherent Illumination, Phase can be retrieved.

Phase Retrieval → Iterative Algorism developed by Gerchberg & Saxon, followed by the improvement by Fienup (Opt. Lett. 3 (1978) 27.)

Scattered Intensity

Phase Retrieval

Reconstruction of Complex Real Space Images

Scattered Intensity

JASS02

Original Image

Reconstructed Image After 5000 iteration

3D Diffraction Microscopy

Miao et al. PRL (2002)

Two Layer Ni Pattern

SEM image of Ni pattern on SiN

Coherent Scattering Pattern

2D Reconstructed Image (<10 nm resolution)

3D Reconstructed Image (~50 nm resolution)