Diffraction
 T. Ishikawa

Part 1 Kinematical Theory

Introduction

What I intend to give in this lecture:

- Basic Concepts of "Diffraction"

Simpler Case: Kinematical Theory (Part 1)
Complicated Case: Dynamical Theory (Part 2)

The speaker has been worked on experimental dynamical diffraction for 25 years. Now, he is in charge of X-ray optics for SPring-8, world's largest 3rd generation synchrotron facility in Japan.

X-Rays as Shorter Wavelength Electromagnetic Wave

Electromagnetic Spectrum

Scattering of x-rays by a point charge (Thomson Scattering)

Scattering of x -rays by distributed charge (1/2)

K_{0} : Incident Wave Vector
K_{S} : Scattered Wave Vector $\rho(x)$: Number Density of Electron

Contribution from a volume element $d^{3} \boldsymbol{x}$ at \boldsymbol{x}
$d \boldsymbol{E}_{\text {radiation }}^{\text {distribution }}=\boldsymbol{E}_{\text {radiation }}^{\text {point charge }} \rho(\boldsymbol{x}) \exp \left[-i\left(\boldsymbol{K}_{s}-\boldsymbol{K}_{o}\right) \cdot \boldsymbol{x}\right] d^{3} \boldsymbol{x}$

Scattering of x -rays by distributed charge (2/2)

$$
\boldsymbol{E}_{\text {radiation }}^{\text {distribution }}=\boldsymbol{E}_{\text {radiation }}^{\text {point charge }} \iiint \rho(\boldsymbol{x}) \exp \left[-i\left(\boldsymbol{K}_{s}-\boldsymbol{K}_{\boldsymbol{o}}\right) \cdot \boldsymbol{x}\right] d^{3} \boldsymbol{x}
$$

3D Fourier Transform of Charge Density
Scattered Intensity

$$
\begin{aligned}
& I=I^{\text {single }}\left|\iiint \rho(\boldsymbol{x}) \exp \left[-i\left(\boldsymbol{K}_{s}-\boldsymbol{K}_{\boldsymbol{o}}\right) \cdot \boldsymbol{x}\right] d^{3} \boldsymbol{x}\right|^{2} \\
& =\frac{r_{o}^{2} \sin ^{2} \alpha}{r^{2}} I_{o}\left|\iiint \rho(\boldsymbol{x}) \exp \left[-i\left(\boldsymbol{K}_{s}-\boldsymbol{K}_{o}\right) \cdot \boldsymbol{x}\right] d^{3} \boldsymbol{x}\right|^{2}
\end{aligned}
$$

Electronic Charge Distribution in Crystal

Crystal = 3D Regular Stacking of Molecules

Fourier Transform of the Electronic Charge Distribution in Crystal

Charge Density in Unit Cell

$$
\int_{\text {uniceell }} \rho(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}=\sum_{\text {atom }} \int_{\text {atom }} \rho_{\text {atom }}^{(a)}\left(\boldsymbol{x}-\boldsymbol{R}_{n}\right) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}=\sum_{\text {atom }} e^{-i \boldsymbol{K} \cdot \boldsymbol{R}_{n}} \int_{\text {atom }} \rho_{\text {atom }}^{(a)}(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}
$$

Atomic Scattering Factor, Structure Factor

Atomic Scattering Factor

$$
f^{(a)}(\boldsymbol{K})=\int_{\text {arom }} \rho_{\text {alom }}^{(a)}(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}
$$

Structure Factor

$$
\begin{gathered}
F(\boldsymbol{K})=\int_{\text {unitcell }} \rho(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}=\sum_{\text {atom }} e^{-i \boldsymbol{K} \cdot \boldsymbol{R}_{n}} f^{(a)}(\boldsymbol{K}) \\
\int_{\text {crystal }} \rho(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x}=\left(\frac{1-e^{-i L K \cdot a}}{1-e^{-i \boldsymbol{K} \cdot a}}\right)\left(\frac{1-e^{-i M K \cdot b}}{1-e^{-i K \cdot b}}\right)\left(\frac{1-e^{-i N K \cdot c}}{1-e^{-i \boldsymbol{K} \cdot c}}\right) \int_{\text {unitcell }} \rho(\boldsymbol{x}) e^{-i \boldsymbol{K} \cdot \boldsymbol{x}} d^{3} \boldsymbol{x} \\
=\left(\frac{1-e^{-i L K \cdot a}}{1-e^{-i K \cdot a}}\right)\left(\frac{1-e^{-i M K \cdot b}}{1-e^{-i \boldsymbol{K} \cdot b}}\right)\left(\frac{1-e^{-i N K \cdot c}}{1-e^{-i K \cdot c}}\right) F(\boldsymbol{K})
\end{gathered}
$$

Laue Function (1/3)

$$
\begin{gathered}
\frac{1-e^{-i L K \cdot a}}{1-e^{-i K \cdot a}}=\frac{e^{-i \frac{L K \cdot a}{2}}\left(e^{+i \frac{L K \cdot a}{2}}-e^{-i \frac{L K \cdot \boldsymbol{a}}{2}}\right)}{e^{-i \frac{K \cdot a}{2}}\left(e^{+i \frac{K \cdot \boldsymbol{a}}{2}}-e^{-i \frac{K \cdot \boldsymbol{a}}{2}}\right)}=\frac{e^{-i \frac{L K \cdot \boldsymbol{a}}{2}} \sin \frac{L \boldsymbol{K} \cdot \boldsymbol{a}}{2}}{e^{-i \frac{K \cdot \boldsymbol{a}}{2}} \sin \frac{\boldsymbol{K} \cdot \boldsymbol{a}}{2}} \\
I_{\text {cryssal }}=\frac{r_{o}^{2} \sin ^{2} \alpha}{r^{2}} I_{o}|F(\boldsymbol{K})|^{2}\left(\frac{\sin \frac{L \boldsymbol{K} \cdot \boldsymbol{a}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{a}}{2}}\right)^{2}\left(\frac{\sin \frac{M \boldsymbol{K} \cdot \boldsymbol{b}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{b}}{2}}\right)^{2}\left(\frac{\sin \frac{N \boldsymbol{K} \cdot \boldsymbol{c}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{c}}{2}}\right)^{2}
\end{gathered}
$$

Laue Function (2/3)

$$
\begin{aligned}
& \boldsymbol{K} \cdot \boldsymbol{a} \rightarrow 0 \Rightarrow\left(\frac{\sin \frac{L K \cdot \boldsymbol{a}}{2}}{\sin \frac{K \cdot \boldsymbol{a}}{2}}\right)^{2} \rightarrow L^{2} \\
& \left(\frac{\sin \frac{L K \cdot \boldsymbol{a}}{2}}{\sin \frac{K \cdot \boldsymbol{a}}{2}}\right)^{2} \text { :periodic function } \\
& \boldsymbol{K} \cdot \boldsymbol{a} \rightarrow 2 h \pi \Rightarrow\left(\frac{\sin \frac{L \boldsymbol{K} \cdot \boldsymbol{a}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{a}}{2}}\right)^{2} \rightarrow L^{2} ; h \text { integer } \\
& \text { Similarly, } \\
& \boldsymbol{K} \cdot \boldsymbol{b} \rightarrow 2 k \pi, k \text { integer } \Rightarrow\left(\frac{\sin \frac{M \boldsymbol{K} \cdot \boldsymbol{b}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{b}}{2}}\right)^{2} \rightarrow M^{2} \\
& \text { and } \\
& K \cdot \boldsymbol{c} \rightarrow 2 l \pi, l \text { integer } \Rightarrow\left(\frac{\sin \frac{N K \cdot \boldsymbol{c}}{2}}{\sin \frac{\boldsymbol{K} \cdot \boldsymbol{c}}{2}}\right)^{2} \rightarrow N^{2}
\end{aligned}
$$

Laue Function (3/3)

Scattering from a crystal is appreciable only when

$$
\begin{aligned}
& \boldsymbol{K} \cdot \boldsymbol{a}=2 \pi h \\
& \boldsymbol{K} \cdot \boldsymbol{b}=2 \pi k \quad h, k, l ; \text { integer } \\
& \boldsymbol{K} \cdot \boldsymbol{c}=2 \pi l
\end{aligned}
$$

Then,

$$
I_{c \text { nystal }}=\frac{r_{o}^{2} \sin ^{2} \alpha}{r^{2}} I_{o}(L M N)^{2}|F(\boldsymbol{K})|^{2}
$$

Reciprocal Lattice (1/3)

Scattering from a crystal is appreciable only when

$$
\begin{aligned}
K \cdot a & =2 \pi h \\
K \cdot b & =2 \pi k \\
K \cdot c & =2 \pi l
\end{aligned} \quad h, k, l: \text { integer }
$$

Base Vectors of Reciprocal Lattice

$$
\begin{aligned}
& \boldsymbol{a}^{*}=\frac{2 \pi(\boldsymbol{b} \times \boldsymbol{c})}{\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})}, \boldsymbol{b}^{*}=\frac{2 \pi(\boldsymbol{c} \times \boldsymbol{a})}{\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})}, \boldsymbol{c}^{*}=\frac{2 \pi(\boldsymbol{a} \times \boldsymbol{b})}{\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})} \\
& a^{*} \cdot \boldsymbol{a}=2 \pi, a^{*} \cdot \boldsymbol{b}=0, a^{*} \cdot \boldsymbol{c}=0 \\
& \boldsymbol{b}^{*} \cdot \boldsymbol{b}=2 \pi, \boldsymbol{b}^{*} \cdot \boldsymbol{a}=0, \boldsymbol{b}^{*} \cdot \boldsymbol{c}=0 \\
& c^{*} \cdot c=2 \pi, c^{*} \cdot a=0, c^{*} \cdot \boldsymbol{b}=0
\end{aligned}
$$

Reciprocal Lattice (2/3)

Reciprocal Lattice (3/3)

$$
\begin{aligned}
& \text { Reciprocal Lattice Vector } \\
& \qquad \begin{array}{c}
\boldsymbol{g}=h \boldsymbol{a}^{*}+k \boldsymbol{b}^{*}+l \boldsymbol{c}^{*} \\
\qquad h, k, l ; \text { integer } \\
\boldsymbol{K}=\boldsymbol{g} \Rightarrow \boldsymbol{K} \cdot \boldsymbol{a}=2 \pi h, \boldsymbol{K} \cdot \boldsymbol{b}=2 \pi k, \boldsymbol{K} \cdot \boldsymbol{c}=2 \pi l
\end{array}
\end{aligned}
$$

When the scattering vector, $\boldsymbol{K}=\boldsymbol{K}_{\mathrm{s}}-\boldsymbol{K}_{\mathrm{o}}$, corresponds to a reciprocal lattice vector, strong diffraction may be observed (necessary condition, but not a sufficient condition).

Ewald Sphere

Forbidden Reflection (1/2)

$K=g$ is a necessary condition for observing diffraction, but not a sufficient condition...

If $\mathrm{F}(\boldsymbol{K})=0$, then $I_{\text {crystal }}=0$ even when $\boldsymbol{K}=g$.
Example 1, Body Center Cubic Lattice (bcc)

$$
\begin{aligned}
& F(\boldsymbol{g})=f^{a}(\boldsymbol{g})\left\{\exp (i \boldsymbol{g} \cdot \boldsymbol{0})+\exp \left(i \boldsymbol{g} \cdot\left(\frac{1}{2} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b}+\frac{1}{2} \boldsymbol{c}\right)\right)\right\} \\
& =f^{a}(\boldsymbol{g})\{1+\exp (i \pi(h+k+l))\}
\end{aligned}
$$

$$
h+k+l=o d d \Rightarrow F(\boldsymbol{g})=0 \text { (Forbidden Reflection) }
$$

$$
h+k+l=e v e n \Rightarrow F(g)=2 f^{a}(g)
$$

Forbidden Reflection (2/2)

Example 2, Face Center Cubic Lattice (fcc)

$F(g)=f^{a}(g)\{1+\exp (i \pi(h+k))+\exp (i \pi(k+l))+\exp (i \pi(l+h))\}$
h, k, l all odd or all even $\Rightarrow F(g)=4 f^{a}(g)$
Otherwise $\Rightarrow F(g)=0$ (Forbidden Reflection)

Special Topics

What we can measure in diffraction/scattering experiment
= Intensity

All phase information is lost!
Non-Crystalline Charge Distribution:

$$
\begin{aligned}
& I=\frac{r_{o}^{2} \sin ^{2} \alpha}{r^{2}} I_{o}\left(\left.\iiint \rho(\boldsymbol{x}) \exp [-i \boldsymbol{K} \cdot \boldsymbol{x}] d^{3} \boldsymbol{x}\right|^{2}=\sqrt{\frac{\varepsilon_{o}}{\mu_{o}}} \boldsymbol{E} \cdot \boldsymbol{E}^{*}\right. \\
& \boldsymbol{E}^{*}: \text { complex conjugate of } \boldsymbol{E}
\end{aligned}
$$

If

$$
\begin{aligned}
& E=\frac{r_{o} \sin \alpha}{r} \sqrt{I_{o} \sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}} \iiint \rho(\boldsymbol{x}) \exp [-i \boldsymbol{K} \cdot \boldsymbol{x}] d^{3} \boldsymbol{x} \\
& =\sqrt{I \sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}} \exp (i \varphi)
\end{aligned}
$$

is obtained, we can calculate $\rho(x)$ by Fourier inversion.

Iterative Phase Retrieval (Jianwei Miao \& David Sayre)

X-ray intensity data: Phase Information is Lost!
Scattered pattern in Far Field with Coherent Illumination, Phase can be retrieved.

Phase Retrieval \rightarrow Iterative Algorism developed by Gerchberg \& Saxon, followed by the improvement by Fienup (Opt. Lett. 3 (1978) 27.)

Real Space Image

Scattered Intensity
total 256×256 image 75×37 iteration: 0

Phase Retrieval

Reconstruction of Complex Real Space Images

total 2048×2048 image 800×552 iteration: 0

Real Space

Phase Retrieval
Scattered Intensity

Original Image

Reconstructed Image
After 5000 iteration

3D Diffraction Microscopy

Two Layer Ni Pattern

SEM image of Ni pattern on SiN

2D Reconstructed Image (<10 nm resolution)

Coherent Scattering Pattern

3D Reconstructed Image ($\sim 50 \mathrm{~nm}$ resolution)

