Diffraction
 T. Ishikawa

Part 2, Dynamical Diffraction

Introduction

In the 1st part, we dealt with "Kinematical Theory" where the scattered x-rays suffer no additional scattering.
The 2nd part is designed to give basic ideas of "Dynamical Diffraction" observed with perfect crystals as a result of multiple scattering.

Basic Idea

Maxwell Equation (1/2)

$$
\begin{array}{ll}
\nabla \cdot \boldsymbol{D}=\rho_{\text {true }} & \boldsymbol{E}: \text { electric field } \\
\nabla \cdot \boldsymbol{B}=0 & \begin{array}{l}
\boldsymbol{D}: \text { electric displacement } \\
\boldsymbol{H}: \text { magnetic field }
\end{array} \\
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} & \begin{array}{l}
\boldsymbol{B}: \text { magnetic induction } \\
\rho: \text { charge density } \\
\text { j: current density } \\
\boldsymbol{P}: \text { polarization }
\end{array} \\
\nabla \times \boldsymbol{H}=\boldsymbol{j}_{\text {true }}+\frac{\partial \boldsymbol{D}}{\partial t} & \varepsilon_{o}=\frac{1}{c^{2}} \\
\boldsymbol{D}=\varepsilon_{o} \boldsymbol{E}+\boldsymbol{P} & \begin{array}{l}
\text { M: magnetization } \\
\varepsilon_{0}: \text { permittivity of vacuum } \\
\mu_{0} \text { : permeability of vacuum }
\end{array} \\
\boldsymbol{H}=\frac{\boldsymbol{B}}{\mu_{o}}-\boldsymbol{M} & \begin{array}{l}
\chi \text { electric susceptibility } \\
\text { c: speed of light in vacuum }
\end{array} \\
\boldsymbol{P}=\varepsilon_{o} \chi \boldsymbol{E} &
\end{array}
$$

Maxwell Equation (2/2)

For periodically oscillating electromagnetic field;

$$
j_{\text {true }}=0, \rho_{\text {true }}=0 .
$$

For non-magnetic materials, $\boldsymbol{M}=0$ so that $\boldsymbol{B}=\mu_{0} \boldsymbol{H}$.

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{D}=0 \\
& \nabla \cdot \boldsymbol{H}=0 \\
& \nabla \times \boldsymbol{E}=-\mu_{o} \frac{\partial \boldsymbol{H}}{\partial t} \\
& \nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial t}
\end{aligned}
$$

Polarization

Polarization $\boldsymbol{P}=$ electric dipole moment in unit volume

$$
\begin{gathered}
\boldsymbol{P}=\varepsilon_{o} \chi \boldsymbol{E} \\
\boldsymbol{P}=\boldsymbol{p} \rho(r)=-\operatorname{ex} \rho(r)=-\frac{e^{2}}{m \omega^{2}} \rho(r) \boldsymbol{E} \\
\chi(\boldsymbol{r})=-\frac{e^{2}}{m \omega^{2} \varepsilon_{o}} \rho(\boldsymbol{r})=-\frac{e^{2} \lambda^{2}}{4 \pi^{2} \varepsilon_{o} m c^{2}} \rho(\boldsymbol{r})=-r_{o} \frac{\lambda^{2}}{\pi} \rho(\boldsymbol{r})
\end{gathered}
$$

$\chi(r)$ have the periodicity of crystal lattice

$$
\begin{aligned}
\chi(r) & =\sum_{g} \chi_{g} \exp (i g \cdot r) \\
\rho(\boldsymbol{r}) & =\frac{1}{v_{c}} \sum_{g} F(g) \exp (i g \cdot r) \\
\Rightarrow \chi_{g} & =-\frac{r_{o} \lambda^{2}}{\pi v_{c}} F(\boldsymbol{g})
\end{aligned}
$$

Electromagnetic Wave in Periodic Medium

Bloch Theorem

$$
\text { Incident Plane Wave in Vacuum } \quad \exp \left\{i\left(\boldsymbol{K}_{o} \cdot \boldsymbol{r}-\omega t\right)\right\}
$$

W Waves inside Periodic Medium $E=\exp \left\{i\left(\boldsymbol{K}_{o} \cdot \boldsymbol{r}-\omega t\right)\right\} u(\boldsymbol{r})$
$\mathrm{u}(r)$ has periodicity of crystal lattice
I) $\mathrm{u}(r)$ can be expanded in a Fourier Series with reciprocal lattice vector, g.

$$
\begin{aligned}
& E=\exp \left\{i\left(\boldsymbol{K}_{o} \cdot \boldsymbol{r}-\omega t\right)\right\} \sum_{g} E_{g} \exp (i \boldsymbol{g} \cdot \boldsymbol{r}) \\
& =e^{-i \omega t} \sum_{g} E_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right) \quad \text { Bloch Wave } \\
& \boldsymbol{K}_{g}=\boldsymbol{K}_{o}+\boldsymbol{g}
\end{aligned}
$$

Some Mathematic....

$$
\frac{\partial \boldsymbol{D}}{\partial t}=-i \omega \boldsymbol{D}, \frac{\partial \boldsymbol{H}}{\partial t}=-i \omega \boldsymbol{H} \quad \begin{aligned}
\nabla \times(\nabla \times \boldsymbol{E}) & =i \omega \mu_{o} \nabla \times \boldsymbol{H} \\
& =i \omega \mu_{o}(-i \omega) \boldsymbol{D} \\
& =\omega^{2} \mu_{o} \varepsilon_{o}(1+\chi(\boldsymbol{r})) \boldsymbol{E} \\
& =\frac{\omega^{2}}{c^{2}}(1+\chi(\boldsymbol{r})) \boldsymbol{E} \\
& =K^{2}(1+\chi(\boldsymbol{r})) \boldsymbol{E}
\end{aligned}
$$

$$
\begin{gathered}
K=\frac{\omega}{c}=\frac{2 \pi}{\lambda} ; \mathrm{X} \text { - ray wavenumber in vacuum } \\
\nabla \times\left\{\boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)\right\}=i \boldsymbol{K}_{g} \times \boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right) \\
\nabla \times \nabla \times\left\{\boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)\right\}=-\boldsymbol{K}_{g} \times\left(\boldsymbol{K}_{g} \times \boldsymbol{E}_{g}\right) \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)
\end{gathered}
$$

Mathematics (cont'd)

$$
\begin{align*}
& E_{g \mid\left\lfloor K_{k}\right]}=-\frac{1}{K_{g}^{2}} K_{z} \times\left(K_{g} \times E_{g}\right) \\
& \Rightarrow \nabla \times \nabla \times\left\{E_{g} \exp (i g \cdot r)\right\}=K_{g}^{2} E_{\varepsilon \|\left\lfloor K_{1} 1\right.} \exp (i g \cdot r) \\
& \chi(r) E(r)=\sum_{W} \sum_{n} \chi_{n} \cdot \exp \left(i h^{\prime} \cdot r\right) E_{n} \cdot \exp \left(i \mathcal{K}_{n} \cdot r\right) \\
& =\sum_{s} \sum_{h} X_{s, s} E_{n} \exp \left(i K_{s} \cdot r\right) \\
& h+h^{\prime}=g, h^{\prime}+K_{h}=K_{g} \\
& \sum_{g}\left\{K_{g}^{2} E_{g \mid\left\lfloor K_{k}\right]}-K^{2} E_{g}-K^{2} \sum_{h} \chi_{g-h} E_{h}\right\} \exp \left(i K_{g} \cdot r\right)=0 \tag{*}
\end{align*}
$$

Basic Equations for Dynamical Theory

Condition for the equation (*) should be valid for arbitrary r gives the basic equation for dynamical diffraction theory:

$$
\frac{K_{g}^{2} \boldsymbol{E}_{g\left[\perp K_{g}\right]}-K^{2} \boldsymbol{E}_{g}}{K^{2}}=\sum_{h} \chi_{g-h} \boldsymbol{E}_{h}
$$

Since

$$
\chi_{g} \square 10^{-6} \Rightarrow \boldsymbol{E}_{g\left[\perp k_{g}\right]} \cong \boldsymbol{E}_{g}
$$

the basic equation is well approximated by

$$
\frac{K_{g}^{2}-K^{2}}{K^{2}} \boldsymbol{E}_{g}=\sum_{h} \chi_{g-h} \boldsymbol{E}_{h}
$$

Boundary Conditions (1/3)

vacuum

Fields in vacuum: $\left(\boldsymbol{E}^{a}, \boldsymbol{D}^{a}\right)$
Fields in crystal: $(\boldsymbol{E}, \boldsymbol{D})$

$$
z=H
$$

Boundary conditions from Maxwell Equations:
Continuity of tangential components of Electric Fields

$$
E_{t}=E^{a}{ }_{t}
$$

Continuity of normal components of Electric Displacements

$$
D_{z}=D_{z}^{a}
$$

t : tangential component, z : $\mathrm{z}(=$ normal $)$ component

Boundary Conditions (2/3)

Wavefield : Superposition of plane waves

$$
\boldsymbol{E}=\exp (-i \omega t) \sum_{g} \boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)
$$

Wave Vector in Crystal: \boldsymbol{K}_{g}
Wave Vector in Vacuum: K

$$
K_{g t}=K_{m t}
$$ Wave Vector in Vacuum: $\underline{\boldsymbol{K}}_{m}$

crystal wave

$$
\boldsymbol{E}=\sum_{g} \boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right), \boldsymbol{D}=\sum_{g} \boldsymbol{D}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)
$$

vacuum wave
$\boldsymbol{E}^{a}=\sum_{m} \boldsymbol{E}_{m}^{a} \exp \left(i \boldsymbol{K}_{m} \cdot \boldsymbol{r}\right), \boldsymbol{D}^{a}=\sum_{m} \boldsymbol{D}_{m}^{a} \exp \left(i \boldsymbol{K}_{m} \cdot \boldsymbol{r}\right)$

Boundary Conditions (3/3)

unit vector normal to the surface: \hat{z} unit vector tangential to the surface: $\hat{\boldsymbol{t}}$

$$
\begin{aligned}
& K_{g}=K_{g z} \hat{z}+K_{g t} \hat{t} \\
& K_{m}=K_{m z} \hat{z}+K_{m t} \hat{t}
\end{aligned}
$$

\longrightarrow Boundary Condition at $z=H$ (Crystal Surface)

$$
\begin{aligned}
& \sum_{K_{g t}=K_{m t}} E_{g t} \exp \left(i K_{g z} H\right)=\sum_{K_{g t}=K_{m t}} E_{m t}^{a} \exp \left(i K_{m z} H\right) \\
& \sum_{K_{g t}=K_{m t}} D_{g z} \exp \left(i K_{g z} H\right)=\sum_{K_{g t t}=K_{m t}} D_{m z}^{a} \exp \left(i K_{m z} H\right)
\end{aligned}
$$

$$
\chi_{g} \square 1 \Rightarrow \sum_{K_{g t}=K_{m t}} \boldsymbol{E}_{g} \exp \left(i K_{g z} H\right)=\sum_{K_{g t}=K_{m t}} \boldsymbol{E}_{\boldsymbol{m}}^{\boldsymbol{a}} \exp \left(i K_{m z} H\right)
$$

Two-Wave Approximation (1/3)

Under usual experimental conditions, only two waves with K_{0} (incident direction) and \boldsymbol{K}_{g} (diffracted direction) are strong inside the crystal.

Wavefield in crystal:

$$
\boldsymbol{E}=\boldsymbol{E}_{0} \exp \left(i \boldsymbol{K}_{0} \cdot \boldsymbol{r}\right)+\boldsymbol{E}_{g} \exp \left(i \boldsymbol{K}_{g} \cdot \boldsymbol{r}\right)
$$

Basic Equation:

$$
\begin{aligned}
& \left(K_{o}^{2}-k^{2}\right) E_{o}-K^{2} P \chi_{\bar{g}} E_{g}=0 \\
& K^{2} P \chi_{g} E_{o}-\left(K_{g}^{2}-k^{2}\right) E_{g}=0
\end{aligned}
$$

Averaged refractive index of crystal:
Polarization Factor

$$
n=1+\frac{\chi_{0}}{2} \Rightarrow k=K\left(1+\frac{\chi_{0}}{2}\right)
$$

$$
\begin{aligned}
& P=1 \\
& P=\cos 2 \theta_{B}
\end{aligned}
$$

$$
\text { for } \sigma \text {-polarization }
$$

$$
\text { for } \pi \text {-polarization }
$$

Two-Wave Approximation (2/3)

Condition for the basic equation,

$$
\begin{align*}
& \left(K_{o}^{2}-k^{2}\right) E_{o}-K^{2} P \chi_{\bar{g}} E_{g}=0 \\
& K^{2} P \chi_{g} E_{o}-\left(K_{g}^{2}-k^{2}\right) E_{g}=0
\end{align*}
$$

)
to have non-trivial solutions is

$$
\begin{aligned}
& \left|\begin{array}{ll}
K_{o}^{2}-k^{2} & K^{2} P \chi_{\bar{g}} \\
K^{2} P \chi_{g} & K_{g}^{2}-k^{2}
\end{array}\right|=0 \\
& K_{g}=K_{o}+\boldsymbol{g}
\end{aligned}
$$

By introducing new parameters:

$$
\begin{aligned}
& \xi_{o}=K_{o}-k \\
& \xi_{g}=K_{g}-k
\end{aligned}
$$

dispersion sphere

Two Wave Approximation (3/3)

For non-absorbing crystals,

$$
\begin{aligned}
& \chi_{\bar{g}}=\chi_{g}^{*}\left(\text { complex conjugate of } \chi_{g}\right) \\
& \chi_{g} \chi_{\bar{g}}=\left|\chi_{g}\right|^{2}
\end{aligned}
$$

When we introduce a new parameter Λ as

$$
\begin{gathered}
\Lambda=\frac{2 \pi \cos \theta_{B}}{K|P|\left|\chi_{g}\right|}=\frac{\lambda \cos \theta_{B}}{|P|\left|\chi_{g}\right|}, \\
\xi_{o} \xi_{g}=\frac{\pi^{2} \cos ^{2} \theta_{B}}{\Lambda^{2}}
\end{gathered}
$$

Near the point L_{o},

$$
\begin{aligned}
& \xi_{o}=-x \sin \theta_{B}+y \cos \theta_{B} \\
& \xi_{g}=x \sin \theta_{B}+y \cos \theta_{B}
\end{aligned}
$$

Dispersion surfaces form Hyperbolla

$$
-x^{2} \sin ^{2} \theta_{B}+y^{2} \cos ^{2} \theta_{B}=\frac{\pi^{2} \cos ^{2} \theta_{B}}{\Lambda^{2}}
$$

Amplitude Ratio

$$
\begin{aligned}
& 2 \xi_{o} E_{o}-K P \chi_{\bar{g}} E_{g}=0 \\
& K P \chi_{g} E_{o}-2 \xi_{g} E_{g}=0
\end{aligned}
$$

Amplitude Ratio

$$
\begin{gathered}
r_{j}=\frac{E_{g j}}{E_{o j}}=\frac{2 \xi_{o j}}{K P \chi_{\bar{g}}}=\frac{K P \chi_{g}}{2 \xi_{g j}} \\
j=1,2
\end{gathered}
$$

Diffraction Geometry

Symmetric Laue Case

Symmetric Bragg Case

Symmetric Laue Case

Dispersion sphere of vacuum wave (radius K)

Starting point of wave
vector $K_{o}: ~ P$
Laue point: L
Deviation from Bragg
Condition

$$
\Delta \theta=\frac{\overline{L P}}{K}
$$

$$
p_{o} p_{g}=\frac{\xi_{g}-\xi_{o}}{\cos \theta_{B}}=2 \sin \theta_{B} \cdot \overline{L P}
$$

$$
=2 K\left(\theta_{B}-\theta\right) \sin \theta_{B}
$$

Symmetric Laue Case: Deviation Parameter

Deviation Parameter W

$$
\begin{aligned}
W & =\frac{p_{o} p_{g}}{L_{L} L_{2}}=\frac{2 \Lambda \sin \theta_{B}}{\lambda}\left(\theta_{B}-\theta\right) & \xi_{g}-\xi_{o}=\frac{2 \pi W}{\Lambda} \cos \theta_{B} \\
& =\frac{\left(\theta_{B}-\theta\right) \sin 2 \theta_{B}}{|P|\left|\chi_{z}\right|} & \xi_{s} \xi_{o}=\frac{\pi^{2} \cos ^{2} \theta_{B}}{\Lambda^{2}}
\end{aligned}
$$

Solving above equations, we can get

$$
\begin{array}{ll}
\sigma-\text { polarization } & W^{\sigma} \\
\pi-\text { polarization } & W^{\pi} \\
W^{\sigma}=\left|\cos 2 \theta_{B}\right| W^{\pi} &
\end{array}
$$

Usually $W=W^{\sigma}$

$$
\begin{aligned}
& \xi_{o j}=\frac{\pi \cos \theta_{B}}{\Lambda}\left(-W \pm \sqrt{W^{2}+1}\right) \\
& \xi_{\mathrm{gj}}=\frac{\pi \cos \theta_{B}}{\Lambda}\left(W \pm \sqrt{W^{2}+1}\right)
\end{aligned}
$$

upper sign: $j=1$, lower sign: $j=2$

Symmetric Laue Case: Amplitude Ratio

$$
r_{j}=\frac{E_{g j}}{E_{o j}}=\frac{|P|}{P} \exp \left(i \alpha_{g}\right)\left(-W \pm \sqrt{W^{2}+1}\right)
$$

$$
\text { upper sign } j=1 \text {, lower sign } j=2
$$

Here,

$$
\chi_{g}=\left|\chi_{g}\right| \exp \left(i \alpha_{g}\right)
$$

For non-absorbing crystals,

$$
\begin{aligned}
& \chi_{\bar{s}}=\chi_{g}^{*}, \alpha_{g}=-\alpha_{g},\left|\chi_{\bar{g}}\right|=\left|\chi_{g}\right| \\
& \sqrt{\frac{\chi_{g}}{\chi_{\bar{g}}}}=\exp \left(i \alpha_{g}\right)
\end{aligned}
$$

Symmetric Bragg Case (1/2)

Between L1 and L2, z has no intersections with dispersion surfaces.

Total Reflection Region
Deviation from Bragg Condition

$$
\begin{aligned}
\theta-\theta_{B} & =\frac{\overline{L P}}{K} \\
p_{o} p_{g} & =\frac{-\xi_{g}-\xi_{o}}{\cos \theta_{B}} \\
& =2 \sin \theta_{B} \cdot \overline{L^{\prime} P}=2 K\left(\theta-\theta_{B}-\Delta \theta_{o}\right) \sin \theta_{B}
\end{aligned}
$$

Symmetric Bragg Case (2/2)

$\Delta \theta_{0}$: Deviation from geometrical Bragg angle by refraction

$$
\Delta \theta_{o}=\frac{-\chi_{o}}{\sin 2 \theta_{B}}=\frac{2(1-n)}{\sin 2 \theta_{B}}
$$

Deviation parameter, W

$$
\begin{gathered}
W=\frac{p_{o} p_{g}}{L_{1} L_{2}}=\frac{2 \Lambda \sin \theta_{B}}{\lambda}\left(\theta-\theta_{B}-\Delta \theta_{o}\right) \\
\xi_{g}+\xi_{o}=-\frac{2 \pi W}{\Lambda} \cos \theta_{B}
\end{gathered}
$$

$$
\begin{aligned}
& \xi_{o j}=\frac{\pi \cos \theta_{B}}{\Lambda}\left(-W \mp \sqrt{W^{2}-1}\right) \\
& \xi_{g j}=\frac{\pi \cos \theta_{B}}{\Lambda}\left(W \pm \sqrt{W^{2}-1}\right)
\end{aligned}
$$

upper sign: $j=1$, lower sign: $j=2$

Amplitude Ratio
$r_{j}=\frac{E_{g j}}{E_{o j}}=\frac{|P|}{P} \exp \left(i \alpha_{g}\right)\left(-W \pm \sqrt{W^{2}-1}\right)$
upper sign: $j=1$, lower sign: $j=2$

Rocking Curves

Use monochromatic plane wave as an incident beam;
Rocking the sample crystal around the Bragg angle;

We can observe so-called rocking curve.

Rocking Curve: Symmetric Laue Case (1/3)

Incident Wave

$$
E_{o}^{a} \exp \left(i \boldsymbol{K}^{a} \cdot \boldsymbol{r}\right)
$$

Crystal Wave

$$
\begin{array}{ll}
\text { o-wave } & E_{o 1} \exp \left(i \boldsymbol{K}_{o 1} \cdot \boldsymbol{r}\right) \\
& E_{o 2} \exp \left(i \boldsymbol{K}_{o 2} \cdot \boldsymbol{r}\right) \\
\text { g-wave } & E_{g 1} \exp \left(i \boldsymbol{K}_{g 1} \cdot \boldsymbol{r}\right) \\
& E_{g 2} \exp \left(i \boldsymbol{K}_{g 2} \cdot \boldsymbol{r}\right)
\end{array}
$$

Outgoing Wave

$$
\begin{array}{ll}
\text { o-wave } & E_{d}^{a} \exp \left(i \mathbb{K}^{a} \cdot \boldsymbol{r}\right) \\
\text { g-wave } & E_{g}^{a} \exp \left(i K_{g}^{a} \cdot \boldsymbol{r}\right)
\end{array}
$$

Rocking Curve: Symmetric Laue Case (2/3)

Boundary condition at $\mathrm{z}=0$ (incident surface)

$$
\begin{gathered}
E_{o}^{a}=E_{o 1}+E_{o 2} \\
0=E_{g 1}+E_{g 2} \\
E_{o j}=\frac{1}{2}\left(1 \pm \frac{W}{\sqrt{1+W^{2}}}\right) E_{o}^{a} \\
E_{g j}=\frac{1}{2} \frac{P}{|P|} \exp \left(i \alpha_{g}\right) \frac{ \pm 1}{\sqrt{1+W^{2}}} \\
\text { upper sign: } j=1, \text { lower sign: } j=2
\end{gathered}
$$

At $\mathrm{W}=0$ (exact Bragg condition),

$$
\left|E_{o j}\right|=\left|E_{g j}\right|
$$

Boundary condition at $\mathbf{z}=H$ (exit surface)

$$
\begin{aligned}
& E_{o 1} \exp \left(i K_{o 1} H\right)+E_{o 2} \exp \left(i K_{o 2} H\right)=E_{d}^{a} \exp \left(i K_{z} H\right) \\
& E_{g 1} \exp \left(i K_{g 1} H\right)+E_{g 2} \exp \left(i K_{g 2} H\right)=E_{g}^{a} \exp \left(i K_{g g^{2}}^{a} H\right)
\end{aligned}
$$

$$
\boldsymbol{K}_{o j}=-\overline{\operatorname{PP}_{j}} \hat{\mathrm{z}}+\boldsymbol{K}^{a}
$$

$$
K_{g j}=-\overline{\mathrm{PP}_{j}} \hat{\mathrm{z}}+\boldsymbol{K}^{a}+\boldsymbol{g}
$$

\hat{z} :inner normal vector at the incident surface

$$
\overline{\mathrm{PP}_{\mathrm{j}}}=\frac{-\left(\xi_{\mathrm{oj}}+\frac{K \chi_{o}}{2}\right)}{\cos \theta_{B}}
$$

$$
\longrightarrow \quad K_{o j z}=K_{g j z}=-\overline{\mathrm{PP}_{\mathrm{j}}}+K_{z}^{a}
$$

Rocking Curve: Symmetric Laue Case (3/3)

$$
\begin{aligned}
& \frac{I_{g}^{W}}{I_{o}}=\left|\frac{E_{g}^{a}}{E_{o}^{a}}\right|^{2}=\frac{\sin ^{2}\left(\pi H \sqrt{W^{2}+1} / \Lambda\right)}{W^{2}+1} \\
& \frac{I_{d}^{W}}{I_{o}}=\left|\frac{E_{d}^{a}}{E_{o}^{a}}\right|^{2}=\frac{W^{2}+\cos ^{2}\left(\pi H \sqrt{W^{2}+1} / \Lambda\right)}{W^{2}+1}
\end{aligned}
$$

Rocking Curve: Symmetric Bragg Case (1/3)

Rocking Curve: Symmetric Bragg Case (2/3)

$$
|W| \leq 1 \Rightarrow \text { z-components of } K_{o} \text { and } K_{g} \text { are complex }
$$

$$
\boldsymbol{K}_{o j}=-\overline{\mathrm{PP}_{j}} \hat{\mathrm{z}}+\boldsymbol{K}
$$

$$
K_{g j}=-\overline{\operatorname{PP}}_{j} \hat{z}+\boldsymbol{K}+\boldsymbol{g}
$$

$$
\xi_{o}=\frac{\pi \cos \theta_{B}}{\Lambda}\left(-W+i \sqrt{1-W^{2}}\right)
$$

$$
\overline{\mathrm{PP}_{j}}=-\left(\xi_{0 j}+\frac{K \chi_{0}}{2}\right) / \sin \theta_{B}
$$

Another solution will give a divergent solution

$$
K_{o z}^{i}=\operatorname{Im}\left(K_{o z}\right)=K_{g z}^{i}=\frac{\pi \sqrt{1-W^{2}}}{\Lambda \tan \theta_{B}}
$$

$$
E_{g}^{a}=\frac{|P|}{P} \exp \left(i \alpha_{g}\right)\left(-W+i \sqrt{1-W^{2}}\right) E_{o}^{a}
$$

Rocking Curve: Symmetric Bragg Case (3/3)

Rocking curve (Darwin Curve)
$\frac{I_{g}^{W}}{I_{o}}=\frac{\left|E_{g}^{a}\right|^{2}}{\left|E_{o}^{a}\right|^{2}}=\left\{\begin{array}{cc}\left(|W|-\sqrt{W^{2}-1}\right)^{2} & (|W| \geq 1) \\ 1 & (|W| \leq 1)\end{array}\right.$
$|\mathrm{W}|<1$: All incident energies are reflected back.

Total Reflection

$$
\theta-\theta_{B}=\frac{|P|\left|\chi_{g}\right|}{\sin 2 \theta_{B}} W+\frac{\left|\chi_{o}\right|}{\sin 2 \theta_{B}}
$$

Center of total reflectiuon, $\mathrm{W}=0$, is deviated from geometrical Bragg angle θ_{B} by

$$
\frac{\left|\chi_{o}\right|}{\sin 2 \theta_{B}}
$$

Range of total reflection $(-1<\mathrm{W}<1)$

$$
\begin{aligned}
& \omega=\frac{2|P|\left|\chi_{g}\right|}{\sin 2 \theta_{B}}=\frac{\lambda}{\Lambda \sin \theta_{B}} \\
& =\frac{2}{\pi} \frac{r_{o}}{v_{c}}\left|F_{g}\right| \lambda^{2} \frac{|P|}{\sin 2 \theta_{B}} \propto\left|\chi_{g}\right| \text { or }\left|F_{g}\right|
\end{aligned}
$$

Darwin Width, ~microradian order

Absorbing Crystal

Absorption: Anomalous dispersion term into atomic scattering factor

$$
\begin{aligned}
& \chi_{g}=\chi_{g}^{\prime}+i \chi_{g}^{\prime \prime} \\
& \chi_{g}^{\prime}=-\frac{r_{o} \lambda^{2}}{\pi \nu_{c}} F_{g}^{\prime}=-\frac{r_{o} \lambda^{2}}{\pi v_{c}} \sum_{j}\left(f_{j}^{o}+f_{j}^{\prime}\right) \exp \left(-i g \cdot r_{j}\right) \\
& \chi_{g}^{\prime \prime}=-\frac{r_{o} \lambda^{2}}{\pi v_{c}} F_{g}^{\prime \prime}=-\frac{r_{o} \lambda^{2}}{\pi v_{c}} \sum_{j} f_{j}^{\prime \prime} \exp \left(-i \boldsymbol{g} \cdot \boldsymbol{r}_{j}\right) \\
& \chi_{g}^{\prime}, \chi_{g}^{\prime \prime}: \text { complex } \\
& \quad \chi_{\bar{g}}^{\prime}=\chi_{g}^{\prime *}, \chi_{\bar{g}}^{\prime \prime}=\chi_{g}^{\prime *}
\end{aligned}
$$

Centrosymmetric Crsyatls

$$
\chi_{g}^{\prime}, \chi_{g}^{\prime \prime}: \text { real }
$$

$$
\chi_{\bar{g}}^{\prime}=\chi_{g}^{\prime}, \chi_{\bar{g}}^{\prime \prime}=\chi_{g}^{\prime \prime}
$$

$$
\downarrow
$$

$$
\chi_{g}=\chi_{\bar{g}}
$$

$\chi_{g}^{\prime \prime} \square \quad \chi_{g}^{\prime} \Rightarrow \chi_{g} \chi_{\bar{g}} \approx \chi_{g}^{\prime 2}+2 i \chi_{g}^{\prime} \chi_{g}^{\prime \prime}$

A new parameter κ is defined as

$$
\kappa=\frac{\chi_{g}^{\prime \prime}}{\chi_{g}^{\prime}}
$$

Symmetric Laue Case: Absorbing Crystal (1/2)

$$
\begin{gathered}
\frac{I_{g}^{W}}{I_{o}}=\frac{\exp \left(-\mu H / \cos \theta_{B}\right)}{W^{2}+1}\left\{\sin ^{2}\left(\frac{\pi H \sqrt{W^{2}+1}}{\Lambda}\right)+\sinh ^{2}\left(\frac{\kappa \pi H \sqrt{W^{2}+1}}{\Lambda}\right)\right\} \\
\Lambda=\frac{\lambda \cos \theta_{B}}{|P|\left|\chi_{g}^{\prime}\right|}, W=\frac{\left(\theta_{B}-\theta\right) \sin 2 \theta_{B}}{|P|\left|\chi_{g}^{\prime}\right|}
\end{gathered}
$$

$$
\sin ^{2}\left(\frac{\pi H \sqrt{W^{2}+1}}{\Lambda}\right) \quad \begin{aligned}
& \text { Oscillating Term, Hardly to be observed } \\
& \text { experimentally without very good plane } \\
& \text { wave }
\end{aligned}
$$

$$
\text { averaging } \frac{\overline{I_{g}^{W}}}{I_{o}}=\frac{1}{4\left(W^{2}+1\right)}\left[\exp \left\{-\frac{\mu H}{\cos \theta_{B}}\left(1-\frac{|P| \varepsilon}{\sqrt{1+W^{2}}}\right)\right\}+\exp \left\{-\frac{\mu H}{\cos \theta_{B}}\left(1+\frac{|P| \varepsilon}{\sqrt{1+W^{2}}}\right)\right\}\right]
$$

$$
\varepsilon=\frac{\chi_{g}^{\prime \prime}}{\chi_{o}^{\prime \prime}}
$$

Bloch Wave α
small absorption
Anomalous Transmission (Borrman Effect)

Symmetric Laue Case: Absorbing Crystal (2/2)

Forward Diffraction

$$
\frac{\overline{I_{d}^{W}}}{I_{o}}=\frac{1}{4}\left[\left(1+\frac{W}{\sqrt{1+W^{2}}}\right)^{2} \exp \left\{-\frac{\mu H}{\cos \theta_{B}}\left(1-\frac{|P| \varepsilon}{\sqrt{1+W^{2}}}\right)\right\}+\left(1-\frac{W}{\sqrt{1+W^{2}}}\right)^{2} \exp \left\{-\frac{\mu H}{\cos \theta_{B}}\left(1+\frac{|P| \varepsilon}{\sqrt{1+W^{2}}}\right)\right\}\right]
$$

Symmetric Bragg Case: Absorbing Crystal

Rocking curve for a symmetric Bragg case diffraction from a semi-infinite absorbing crystal (with centrosymmetry)

$$
\begin{aligned}
& \frac{I_{g}^{W}}{I_{o}}=L-\sqrt{L^{2}-1} \\
& L=\frac{W^{2}+g^{2}+\sqrt{\left(W^{2}-g^{2}-1+\kappa^{2}\right)^{2}+4(g W-\kappa)^{2}}}{1+\kappa^{2}} \\
& g=\frac{\chi_{o}^{\prime \prime}}{|P|\left|\chi_{g}^{\prime}\right|}
\end{aligned}
$$

$$
\kappa=0
$$

$\mathrm{k}=0.1$

Summary

Very quick scan of x-ray diffraction theory was attempted.
You may need reference text books.
References

- Dynamical Theory of X-Ray Diffraction, A. Authie, Oxford University Press, 2001
- Handbook on Synchrotron Radiation Vol. 3, North-Holland, 1991.

Thank you for your attention.

Acknowledgement
Some materials presented here are originally prepared by Prof. Seishi Kikuta for his textbook written in Japanese. Some ppt materials have been prepared by Dr. Shunji Goto. Discussion in preparing the lecture with Drs. Shunji Goto, Kenji Tamasaku and Makina Yabashi is appreciated.

