非破壊型ビームポジションモニターの開発研究

石渡 謙一郎^{1,A)}、田中 俊成^{B)}、佐藤 勇^{B)}、早川 建^{B)}、早川 恭史^{B)}、佐藤 和男^{B)}、
猪川 弘康^{A)}、中村 吉宏^{A)}、菅野 浩一^{A)}、境 武志^{A)}、横山 和枝^{A)}、
中澤 裕之^{A)}、藤岡 一雅^{A)}、橋本 英子^{A)}、中尾 圭佐^{A)}、村上 琢哉^{A)}
A) 日本大学大学院理工学研究科量子理工学専攻
〒274 -8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎
^{B)} 日本大学原子力研究所
〒274 -8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎

概要

FEL 用ビームラインのアンジュレーターの前後に 新しく製作した非破壊型のビーム位置モニターを設 置した。これにより実験中にビームを遮ることなく 常時モニターが可能になる。そこで、ビーム位置を 検出する為に、実際に 125MeV 電子線形加速器のビ ームを使用して位置検出試験をおこなった。位置検 出はステアリング電磁石を用い、電子ビームの軌道 を変化させ、ビーム位置モニターの電極から出力さ れる信号電圧をオシロスコープで測定し、それを検 出 RF 電力に変換し、各電力の差と和の比により求め た。

1. はじめに

日本大学原子力研究所電子線利用研究施設 (LEBRA)では、2001年5月に赤外自由電子レーザ ーの発振に成功し⁽¹⁾、大強度・波長可変の自由電子レ ーザーを発生させるために 125MeV 電子線形加速器 の高性能化を進めている。レーザーを効率よく発生 させるには光共振器中を通過する電子ビーム軌道の 高精度の制御が重要になる。

以前に使用していた破壊型のビームプロファイル モニターでは、アンジュレーターの永久磁石を放射 化して性能を低下させる恐れがあり使用をやめたた め、FEL 用ビームラインにはビーム位置をモニター できるものがなかった。そこで、電子ビームが誘起 するマイクロ波をダクト中に挿入したアンテナで検 波する、電子ビームを遮ることのない非破壊型のビ ーム位置モニター (BPM)を3台製作した。この BPM をアンジュレーターの上流側と下流側に設置し、下 流側の BPM で位置検出特性の試験を行ったので、そ の報告をする。

2. BPM の構造

BPM については高エネルギー加速器研究機構 (KEK)で557MHzのマイクロ波を検波する BPM が 既に開発されており^[2]、これを参考にして製作した。 LEBRA の電子線形加速器では加速周波数 2856MHz のマイクロ波と同周期でバンチしたビームが BPM を通過するので、2856MHz のマイクロ波を検波でき るように BPM の寸法を決めた。

BPM の電極はストリップライン型で、同軸ケーブ ルの特性インピーダンス 50 Ω に一致するように、電 極外径とモニター内径の距離:電極間距離を 2.6mm と決めた^[2]。また、電極長 L は、加速周波数 2856MHz の λ /4 の長さで共振するので λ /4~26.24mm より、 L=26.25mm と決定した。主な寸法を表 1 に示す。

また、フランジは ICF70 のステンレス製で、電極 は SUS304 であり、片側をダクトに溶接し、他端をコ ネクタピンに溶接してある。信号はセラミックス絶 縁型 SMA コネクターで出力される。図1に BPM の 構造、図2に BPM の外観を示す。

AI, DIM 1/A	
全長	85mm
モニター外径	40 m m
モニター内径	33mm
電極長	26.25mm
電極内径	25.8mm
電極厚	1mm
電極開口角	45°

図1:BPMの構造

表 1 : BPM 寸法

¹ E-mail: ishiwata@ lebra.nihon-u.ac.jp

図2: BPMの外観

3. BPM の位置検出試験

3.1 測定方法

製作した BPM のうち2台は FEL ビームラインの アンジュレーターの上流側と下流側にそれぞれ設置 した(図3)。BPMの位置検出試験では実際に電子 ビームを通し下流側の BPM を使って以下のような 測定を行った。

まず、電子ビームをほぼ BPM の中央を通過するよ うに調節する。そして、電子ビームをアンジュレー ターの上流側に設置されているステアリング電磁石 (STy14)の垂直方向偏向用コイルの励磁電流を変化 させることにより、ビーム軌道を垂直方向に変化さ せ、それをアンジュレーター下流側の BPM で垂直方 向に配置した電極から得られる信号を測定した。

電極からの信号は、850cm の長さの RG-55/U 高周 波同軸ケーブルを用いて、加速器本体室から実験室 まで運び、アッテネーターを通し、クリスタル検波 器(WILTRON 製,73N50(NEG),100kHz TO 4GHz)で 検波し、オシロスコープで電圧を読み取った(図4)。

検波器の入出力特性は、あらかじめ測定しておき、 検波電圧を RF 電力に換算した。この換算方法は Microsoft Excel の多項式近似曲線を用い、修正を加え た。このときの誤差は2%以内である。

また、ケーブル及びアッテネーターによる減衰量 が上側と下側で若干異なるので、これを考慮し、電 極からの直接の出力に換算した。ケーブルによる減 衰量はケーブルの形状により異なり、8.04dB±0.02dB となり、0.5%以内の誤差が生じている。

3.2 測定結果

測定は、ビームエネルギー86.8MeV、パルス幅 20 µs、繰り返し 2Hz で行い、3回測定した。図5に STy14の励磁電流を4Aにしたときのオシロスコープ の波形を示す。また、図6に各電極からの出力電力 と STy14 に流した励磁電流との関係を示す。図6に おいて、ビームが安定していない為にかなりのばら つきが生じた。また、STy14を±4A以上で励磁する と、電力への換算における誤差が1%を超える。また、 STy14に±5A以上流すとビームが下流のビームライ ン途中でダクトにあたるようになることがビームダ ンプで測定していたビーム電流からわかった。

図4:測定方法

3.3 ビーム位置の評価

BPM 中心から垂直方向のビームのずれ y は(1)式で 見積もることが出来る^[2]。

$$y = k_y \frac{P_1 - P_2}{P_1 + P_2} \tag{1}$$

ここで、 k_y は位置感度係数、 P_1 、 P_2 は各電極からの 出力電力である。和と差の比と STy14 に流した励磁 電流との関係を図7に示す。

図7:STy14の励磁電流と出力電力の和・差の比

ステアリング電磁石 STyl4 によるビーム軌道の変化と BPM の電極からの出力電圧の関係を考える。

まず、STy14 によって曲げられたビームの、BPM における垂直方向のビームの位置 y[mm]はステアリング電磁石で作られる磁場から(2)式で見積もることが出来る。

$$y = \frac{c\mu_0 lNL}{gE}I \tag{2}$$

ただし、*c*:光速、μ₀:真空の透磁率、*l*:ステアリ ング電磁石の有効長(=6cm)、*N*:コイルの巻き数(=2 ×40)、*g*:ギャップ(=5cm)、*L*:STy14 と BPM 間の 距離(=3m)、*E*:ビームエネルギー(=86.8MeV)、*I*:STy14 の励磁電流である。このとき、

$$\frac{c\mu_0 lNL}{gE} = 1.25 \text{ mm/A} \tag{3}$$

となる。ただし、1は磁極長をそのまま採用している。 次に、図7において、STy14の励磁電流-1.5A~1.5A の間で和と差の比の平均を取り、一次式で近似する と、

$$\frac{P_1 - P_2}{P_1 + P_2} = 0.2727I + 0.0151 \qquad (4)$$

このことから、(3)式と(4)式の傾きのみ考慮に入れて、ビームの位置 y[mm]は、BPM 中心からのずれが 1.5mm 以内のとき、

$$y = 4.58 \frac{P_1 - P_2}{P_1 + P_2} \text{ mm}$$
 (5)

のように表されると考えられる。

一方、各電極からの出力電力は近似的に(6)式で見 積もることができる^[2]。

$$P(\delta,\theta,\phi) \propto \left(\frac{R^2 - \delta^2}{R^2 + \delta^2 - 2R\delta\cos\left(\phi - \theta\right)}\right)^2 \qquad (6)$$

ただし、R: BPM の中心から電極までの距離 (=12.9mm)、 δ : BPM の中心からビームまでの距離 である。しかし、今回は望遠鏡を用いたビームモニ ター^[3]では、水平方向へのずれは見られなかった為、 ビームの水平方向のずれを考慮しないことにし、 δ はyに等しいと考えた。

図8は中心からの距離と出力電力の和と差の比の 関係を示したもので、実験値の平均と(6)式によるも のの2つが描かれている。

実験値と(6)式から導き出した結果との違いの原因 として、ステアリング電磁石の有効長を磁極長に等 しいと仮定したが磁場測定で確かめられていないの で正しくない値を使っていることが考えられる。

実験値のビームの位置 y を 0.73 倍させることにより、y=±3mm の範囲でほぼ (6)式による結果と一致 させることができる。

図8:中心からの距離 y と出力電力の和・差の比

4. まとめと今後の課題

今回の測定では、元々検出 RF とビーム位置との関係を較正していなかったのでビーム位置の正確な計測はできなかったが、ビーム位置の変化による検出 RF の変化が概ね計算から予想される感度で得られることが確認できた。今後、ステアリング電磁石の磁場測定を行い励磁電流に対するビーム軌道の変位を精度良く求める必要がある。また、テストベンチにおいて BPM にワイヤーを通し、RF を供給してアンテナの検出 RF とビーム位置の関係を較正するための測定が必要である。

参考文献

- [1] 佐藤勇 他, "日本大学電子線形加速器の高度化と自由 電子レーザーについて", Proceedings of the 26th Linear Accelerator Meeting in Japan, Tsukuba, Aug. 1-3, 2001
- [2] I.Sato, et al., "Design Report on PF Injector Linac Upgrade for KEKB", KEK Report 95-18, March, 1996, A p286-p303
- [3] 田中俊成 他, "アンジュレーター光による FEL ビー ムラインのビーム診断", Proceedings of the 26th Linear Accelerator Meeting in Japan, Tsukuba, Aug. 1-3, 2001