
*chaize@esrf.fr
andy.gotz@esrf.fr
1 http://www.esrf.fr
2 http://www.synchrotron-soleil.fr
3 http://www.elettra.trieste.fr
4 http://www.cells.es

TANGO CONTROL SYSTEM FRAMEWORK

J. M. Chaize* and A. Götz# on behalf of the TANGO teams of ESRF1,SOLEIL2, ELETTRA3 and
ALBA4

Abstract

The ESRF and 3 other institutes are building a new
control system framework around CORBA named
TANGO[1].

 TANGO is based on distributed objects and distributed
services. It can be scaled to control a large accelerator
complex, a beam line or a small embedded system.

TANGO was started at the ESRF in 2000. In 2002
ESRF and SOLEIL in Paris signed an agreement of a
collaborative development of TANGO. In 2004
ELETTRA in Trieste then ALBA in Spain decided to use
TANGO for the control of their accelerators and
beamlines and joined the collaboration.

Thanks to this fruitful collaboration, TANGO has been
constantly improved and completed. The source package
allows users over the world to download it and use it.

TANGO includes an automatic code generator, a set of
services to administrate, archive, display or control
equipment. TANGO bindings exists for commercial
software packages like Matlab, Labview, Igor , SCADA...
Bridges have been written allowing interfacing other
systems such as EPICS or OPC.

The 4 institutes involved are setting up a set of abstract
patterns to standardize the interfaces of common
equipment used in accelerators and beamlines. This
abstraction is a step forward in the interoperability of
software between institutes.

NEEDS
At a high level the needs of today's users for control
systems are as diverse as the applications they are used
for. At the lower level however all control systems have
to satisfy the same basic needs. These needs are
interfacing hardware in a reliable and performing manner,
hiding the complexity of hardware, treating errors and
alarms, distributing controls over the network, easy high-
level access, archiving long term data and user
friendliness.

These needs are true for synchrotron beamlines and
accelerators too. Over the last ten years the main
evolution in these needs has been that the hardware to
interface has become capable of dealing with more
complicated control tasks e.g. micro diffractometer, entire

data taking systems, highly intelligent automatons. This
trend will continue in the future and will include
automated data taking and analysis too. TANGO has been
primarily developed to satisfy these needs. It
has a toolkit approach and can be used for solving the
low-level interfacing problem as well as the high level
part e.g. automating the data analysis.

One of the needs of users which is not often mentioned
but which is assumed is that the control system should not
be out of date. This is one of the problems facing current
control systems e.g. TACO and EPICS.

MOTIVATION
TACO[2], the original ESRF control system, was
developed 15 years ago. Although it has been
continuously improved over the years, e.g. security, C++,
self-describing data types, asynchronism, and events were
added, it is still based on the same technology. This
technology is C, Motif, ndbm and ONC/RPC as network
protocol. These technologies are starting to show their age
e.g. ONC/RPC and Motif are frozen, more powerful
database than ndbm are now available, and C does not
provide support for object oriented programming. New
operating systems, languages and protocols have replaced
the old ones e.g. Linux, Windows XP, standard C++, Java,
Python, CORBA, http and xml to name a few. In order to
profit from the developments going on around these new
technologies it is necessary to integrate them into TACO.
However a limited number of changes can be made
without making TACO unstable.

It was decided therefore to develop a new version of
TACO, called TANGO, which would be based from the
beginning on new technologies. TANGO incorporates all
the good points of TACO (e.g. the distributed device
concept and the database), improves on its weak points
(e.g. device management and development) and adds
missing features like automatic startup, easy deployment,
attributes, and a true object oriented interface. TANGO
runs on the new operating systems and supports new
languages like Java and Python. To allow for seamless
deployment and migration from TACO to TANGO,

2005, Hayama, JapanProceedings of PCaPAC

TANGO is able to communicate with TACO and vice-
versa.

BASICS
The basic aim of TANGO is to provide a toolkit for
building and deploying device servers. It can best be
understood by studying this recipe:

• a piece of hardware or software needs to be

controlled from another program. The program can
be on the same computer but is often running on
another computer.

• read the manual for the hardware/software to find out
what it can do and make a list of the commands
which the hardware/software needs to implement.

• if a device server does not already exist for this
hardware/software then write a device class (in C++,
Java or Python) which implements these commands
as methods. Link everything together into a process
called a device server.

• define the device in the database and start the device
server.

• write the client which will send requests to the device
server and start it.

Device server
The basic concept of TANGO is the device server. The
main job of a control system is to implement device
control. Device servers implement distributed device
control. The distributed device control concept
implements all devices as objects in processes called
device servers distributed over one or more computers or
networks. The network is totally transparent and clients
and servers communicate with devices as if they were
local. CORBA implements transparent network access at
a low level. TANGO adds a high level interface which
provides reliable, fast, modeless, and easy access to
devices.
The second fundamental concept of TANGO is the
database. The database provides a persistent store for
device properties e.g. configuration, limits, device server
startup information, and device network addresses. The
database is implemented as a device server which acts as
a high level database interface.

Attributes and Properties
TANGO supports normalized data types called attributes.
Attributes can be 0, 1 or 2-dimensional data. Each
attribute has a description describing what the data
represents, what the limits, units and alarms are.
Normalized data types are necessary in order to write
generic data display and archiving applications. The
framework for attributes is implemented as part of the
device root class.

Every device can support a list of properties. The
properties are the permanent information related to a
device e.g. static or dynamic information which needs to
be restored after a startup e.g. position counter for a motor.
These properties are stored in the database.

Communication
Communication in TANGO can be synchronous,
asynchronous or event-driven. Synchronous
communication is the easiest to understand and program.
A client sends a request to a server and waits for the
server to execute the request and sends the reply. In
asynchronous communication the client sends a request to
the server and continues immediately without waiting for
the reply. The server executes the request and sends the
reply. The client unpacks the reply when it has time or
can wait for the reply if it needs it before going on.
Asynchronous communication is an efficient way to start
multiple requests on more than one server simultaneously.
Event-driven communication is like asynchronous but the
origin of the request is the server in this case and not the
client. A client subscribes to the event service and then
receives events every time the server detects an event e.g.
a state change, trigger or alarm detected.

Graphical User Interfaces
Graphical users interface (GUI) can be written in Java,

C++ and QT or Python. An important effort has been
made for building Java GUIs
TangoATK is a collection of java-classes to help building
applications based on Java/Swing which interact with
Tango-devices.
It is developed using the design-pattern Model-View-
Controller (MVC)[7] used in Swing. TangoATK provide a
set of graphical objects called “viewers” adapted to each
type of Tango Attributes. The communication between
the non-graphic and graphic objects are done by having
the graphic object registering itself as a listener to the
non-graphic object, and the non-graphic object emitting
events telling the listeners that its state has changed.
TangoATK helps minimizing development time, avoid
code duplication and provide a common look and feel for
all GUIs.
In addition to ATK, TANGO offers client bindings
allowing a certain number of commercial products to
communicate with TANGO devices. Bindings have been
developed for Matlab, Labview, IgorPro, and a Java
SCADA named GlobalScreen. For instance, a physicist
developing mathematical algorithms can access TANGO
devices from a Matlab macro. In Labview, a TANGO
device is represented as a “Virtual Instrument”.

Instances and security
TANGO supports the notion of multiple instances. This
means there can be multiple copies of TANGO control

2005, Hayama, JapanProceedings of PCaPAC

systems running simultaneously each one with its own
database and devices. Communication between various
instances of TANGO is transparent. The multiple instance
concept is useful for managing large installations e.g. at
the ESRF for the machine and numerous beamlines. It can
also be used to avoid a single point of failure in TANGO
by running two copies of the same TANGO control
system.
Security is implemented at the device level. Client access
can be limited to read-only or read-write per request
(command) sent to each device. Permissions are stored in
the database.

Tools
TANGO provides a full set of Java graphical tools to
develop device servers, add them in the database, edit
their properties, start and test a device and manage a
TANGO control system.
POGO, the code generator, generates the C++ or Java
source from the interface specification. It also
automatically generates a minimum HTML
documentation. This tool allows developing device
servers very rapidly. Furthermore, it guarantees a
coherence in the style. All device server’s source code
have the same structure, the same style and have at least a
minimum documentation independently of the
programmer.

Abstract device pattern
In the world of particle accelerator or beam line control,

we often control the same kind of device e.g. beam
position monitors, magnet power supplies, signal
generators, CCD cameras, counters etc… and we often do
the same kind of use of it e.g. scanning, sequencing, data
acquisition, feedback, correlation to name a few.

Since TANGO is an object-oriented system, it is well
adapted to exploit the Abstract Device pattern[8] and to
use inheritance to define a so-called Abstract Control
System.

In TANGO, abstract pattern are currently being written
for most common control system devices. These patterns
specify the common interface that all devices belonging
to a certain family have to implement. It defines the list of
methods and attributes and the minimum behavior for
devices belonging to that family.

Abstract classes are supported by POGO. The code
generator proposes a list of abstract interfaces to the
device server programmer from which her future device
could inherit. In this manner, the programmer benefits
from the experience of the programmers who have written
the abstract interface. The abstract interface becomes a
kind of guideline for the programmer and guarantee that
the new device will be usable by the entire TANGO
community. TANGO device servers, which implement
these interfaces, become easily shared in the wider
community.

These abstract patterns allow system integrators to
build a large collection of device servers that can be used

in different institutes. These institutes can then exchange
hardware control and high level software. For instance, if
in several institutes, the beam orbit server and the steerers
server are compliant with their corresponding abstract
interfaces, these institutes can exchange their beam orbit
correction process even if they do not use the same kind
of hardware.

Applications
TANGO is a toolkit for doing distributed control. It is
ideally suited to controlling embedded hardware via the
network. It can also be used to do direct control without
the network. Examples of the first hardware being
controlled by TANGO device servers are serial lines,
GPIB, OPC servers, stepper motors, power supplies,
digital and analog I/O, CCD cameras, sample
environment controllers. The next generation of devices
will be controlled via USB or the network directly e.g.
using http or xml.

Services
TANGO device server is not limited to controlling only
hardware. It can also be used to implement general
interest services such as number crunching applications
for streamlining data analysis, scanning services,
automatic beam line alignment or alarm management.
These general services are directly reusable by all the
community independently of the hardware choices. Any
contributor can easily extend the list. When associated
with abstract devices these services can become the key
of the interoperability between institutes.

Communicating with other systems
In beamline or accelerator control systems, when starting
a modernization process, we have to integrate the legacy
software currently operating. It is also often necessary to
integrate macro devices supplied with another control
system.
TANGO offers the possibility to integrate easily other
control system protocols. This is achieved by offering
wrapper servers to maps those protocols.
These classes allow to build TANGO devices from a set
of channels coming from a non object oriented protocol.
The following protocols have been integrated: EPICS,
OPC, TACO, Labview DataSocket, Modbus. In such a
manner, TANGO clients can directly access any hardware
controlled with those systems.

TECHNOLOGY

TANGO is based on new technologies and is therefore
compatible with emerging software standards. The new
technologies are :

2005, Hayama, JapanProceedings of PCaPAC

CORBA
is the main TANGO protocol on the wire. CORBA is a
recent standard for distributing objects. It is managed by
the OMG[3] consortium. It defines mappings for C++,
Java, C, Python and other languages. In addition to the
network protocol it defines a number of services of which
events and asynchronous messaging are interesting for
TANGO. A variety of free and commercial
implementations exist. We have chosen OmniORB[4] for
C++ and JacORB[5] for Java. CORBA runs on a wide
variety of platforms. It is supported by emerging
protocols like SOAP[6].

C++
is the main programming language for implementing
device servers. It is as efficient as C but is an object
oriented programming language. The standard C++
library is used.

Java
is the main graphical programming language. It runs on
all platforms and has a rich class library for graphical
programming. It can run standalone or be integrated in
web applications. TANGO supports writing device clients
and servers in Java.

Python
is a popular scripting language. TANGO supports writing
clients and servers in Python.

MySQL
is a fast relational database. It will be used to store all
device related information. Because it is relational it can
evolve to fit the needs of the beamlines and machine as
needed. For example it could be used to store archiving
data or application data. Its fast access is a major asset. It
is possible to run without the database as well. This
option is useful for embedded and mobile devices.

THE COLLABORATION
The development of TANGO started in 2000 at ESRF. In
2002, the new French light source project SOLEIL,

studied several solution to implement the control of it’s
accelerator complex and selected TANGO. A
collaboration agreement has been signed allowing both
institutes to share the development workload and take
together the best strategic decisions. In January 2004, the
Italian Light source ELETTRA, joined the collaboration
and participate actively to the development. A coordinator
has been nominated in each institute and regular meeting
are organized to take decision and follow-up the action
plan[9]. All the code sources are released in the CVS
repository of Sourceforge[10]. TANGO has been rapidly
packaged in such a way that it can be easily
downloaded[11] and installed on one of the supported
platforms. Since then, several other users have
downloaded and are using TANGO successfully. End of
2004, ALBA the future Spanish source decided to base
the control of it’s accelerators and beamlines on TANGO
and jointed the collaboration. There is lots of advantages
of working several institute on the same project. First of
all, it improves the quality of the documentation, it
imposes careful release and synchronization methods,
each piece of software used on several platform by
different users is better debugged, and last but not least,
the different experiences and point of view enrich the
features by taking benefit of the best ideas.

REFERENCES
[1] http://www.esrf.fr/tango

[2] http://www.esrf.fr/taco
[3] http://www.omg.org/
[4] http://omniorb.sourceforge.net/
[5] http://www.jacorb.org
[6] http://www.w3.org/TR/SOAP
[7] Pattern-Oriented Software Architecture: A System of

Patterns by Frank Buschmann, and all
[8] Design Patterns: Elements of Reusable Object-

Oriented Software, by E.Gamma, R.Helm,
R.Johnson, Addison-Wesley, 1995

[9] Tango Collaboration documents http://www-
controle.synchrotron-
soleil.fr:8001/collaboration/index.htm

[10] Sourceforge project for Tango ,
http://sourceforge.net/projects/tango-cs

[11] Source packaging for downloading Tango
http://www.esrf.fr/tango/tango_src.

2005, Hayama, JapanProceedings of PCaPAC

