

RECENT PROGRESS OF STARS

Takashi Kosuge, Yuuki Saito
High Energy Accelerator Research Organization (KEK)

Abstract
STARS (Simple Transmission and Retrieval System)[1],

originally developed as an interface program of COACK
(Component Oriented Advanced Control Kernel)[2-5] for
non-Windows systems, is effective for various control
systems. At present, STARS is installed in the beamline
control system at the KEK Photon Factory and is reported
to be useful by the beamline staff. We are still developing
various types of client programs for STARS.

Recently, we have found that STARS is highly effective
for developing the next version of COACK.

Here we describe the recent status and progress of
STARS and discuss its availability as the core architecture
of the COACK system.

OVERVIEW OF STARS
STARS is a message transferring software for small-

scale control systems with TCP/IP sockets, which works
on various types of operating systems. It was originally
developed as an interface program of COACK for non-
Windows systems.

STARS consists of client programs (STARS clients)
and a server program (STARS server), and each client is
connected to the server via a TCP/IP socket. STARS
users can upgrade the system by writing client programs,
and STARS clients are able to participate in the system at
any time without system stoppage.

Node Name and Message Transfer
STARS clients and STARS servers handle only text-

based messages. Figure 1 shows an example of message
transfer on STARS.

TCP/IP

Dev1
(I/O Client)

STARS
(Simple Transmission

and
Retrieval System)

Term1
(GUI Client)

TCP/IP

(1)

(2)
(3)

(4)

(1) Dev1 message
(2) Term1>Dev1 message
(3) Term1 @message
(4) Dev1>Term1 @message

Each client program has its own unique node name on
STARS and sends messages to the server with the
destination node name. In the above example, a client
named Term1 sends a message (1) to the server with the
destination client name “Dev1”. The server then sends the
message to the applicable client named Dev1 (2).

STARS has the following simple rules for messages:
• A message that starts with “@” (e.g., @message)

is a reply to a command.
• A message that starts with “_” (e.g., _message) is

an event.
• Any other type of message is a command.

Dev1 receives a command from the server in the

example. It must send a reply message to the server with
the destination node name “Term1” (3) in this case.
Finally, the server delivers the message to Term1 (4).

Event Delivery Function
STARS has an event delivery function. Figure 2 shows

an example of the message delivery process. An event
delivery request is registered by sending a “flgon”
command to the STARS server. “System” is used as the
destination node name of the STARS server. In this
example, Term1 sends an event delivery request related to
Dev1 to the server (1). The server then returns a reply
message to Term1 indicating that the request has been
registered (2).

After the request has been accepted by the server, if
Dev1 sends an event message with the destination node
name “System” (3) to the server, the request is delivered
to Term1 (4).

Dev1
(I/O Client)

STARS
(Simple Transmission

and
Retrieval System)

Term1
(GUI Client)

(1)

(2)

(3)

(4)

(1) System flgon Dev1
(2) System>Term1 @flgon Node Dev1 has been registered.
(3) System _SomeEventMessage
(4) Dev1>Term1 _SomeEventMessage

Figure 1: Message transfer on STARS .

Figure 2: Event delivery function.

2005, Hayama, JapanProceedings of PCaPAC

Certification on STARS
STARS has a simple certification procedure in three

steps as follows:

• Host name certification
• Node name and keyword certification
• Node name and host name certification (option)

Figure 3 shows the certification procedure.

ServerClient
Connects via port “6057”.

Returns a random number (RN),

which indicates the valid keyword.
Sends a node name and

the keyword.

Key1

Key2

:

Key1

Key2

:

Checks the node name and

keyword with keyword file.

Success

Keyword list
Keyword list

“term1” =>term1.key

example: if the node name is
“term1” and the RN is 0, then

send “term1 key1”

Checks host name.

Checks the host name

and node name (option).

When a client connects to the STARS server via port
6057, the server first checks the host name of the client
machine. If the host name is not on the list of the server,
the connection is immediately cut by the server. If the
host name exists, the server returns a random number.
This number indicates a valid keyword, and the client
must next send its node name and a corresponding
keyword with the number. For example, if the node name
of the client is “term1” and the server returns “0”, the
client must send “term1 key1” to the server. The server
then checks the node name and keyword against the
keyword file. Finally, the server checks the host name and
node name (if necessary), and if every procedure has been
performed correctly a connection is established.

Hierarchical Node Name
A hierarchically structured system can be developed

with the hierarchical node name of STARS.
A period (“.”) is used for the separator and the STARS

server uses the first part of the node name as the
destination. For example, if the destination node is
specified as “Br1.Dev1” or “Br1.Dev2”, both messages
are delivered to Br1 (Figure 4).

A client program like Br1 must be able to handle

hierarchical node names in a real hierarchically structured
system. This type of client program is called a bridge.

Access to Virtual Machine on COACK
A bridge client that can handle hierarchical node names

was developed as a COACK interface. COACK is able to
handle a virtual image of the hardware (accelerators,
beamlines, etc.), which is called the COACK virtual
machine and has a hierarchical structure. The hierarchical
node names of STARS can be accommodated by the
COACK virtual machine.

Dev1 (I/O)

STARS
(Simple Transmission

and
Retrieval System)

Term1
(GUI Client)

(1)

(2)

(4)

(3)

(1) Br1.Dev1 _message
(2) Term1>Br1.Dev1 _message
(3) Br1.Dev2 _message
(4) Term1>Br2.Dev2 _message

Br1
(Client)

Dev2 (I/O)

APPLICATION OF STARS
Recently, STARS has been operating stably in BL-6A,

NW-12, BL-5, BL-16A, the beamline interlock system,
the access control system for experimental halls, and the
monitoring system for beam transports. Next it will be
installed in BL-1A, BL-1B, BL-14A, BL-20A, BL-28,
and NW-14.

The control system for BL-16A, which operates with
STARS, is described below as an example.

BL-16A
BL-16A at the Photon Factory is an X-ray beamline of

the synchrotron light source. It has two experimental
stations: A1 and A2. Optical devices of the beamline such
as the monochromator and mirrors are controlled from
these two experimental stations, but they use different
control systems (A1: application software with Visual
Basic and LabVIEW; A2: SPEC). We installed STARS in
the beamline and prepared an interface for LabVIEW and
SPEC.

Hardware and Network
The composition of the hardware and network of BL-

16A is shown in Figure 5. A PC for the users’ terminal of
A1 (Windows XP), a PC for the STARS server
(FreeBSD), and an Ethernet/RS-232-C converter are
installed inside a firewall. A PC for A2 (Linux) is
connected to the KEK-LAN directly.

Figure 3: Node name and keyword certification.

Figure 4: Hierarchical namespace.

2005, Hayama, JapanProceedings of PCaPAC

Fire Wall

KEK LAN

Ethernet/
RS232

converter

BL-16A LAN

Motor controllers
Server
FreeBSD

BL-16A1
Windows XP

BL-16A2
LINUX

Software
Figure 6 shows the layout of the STARS clients and

server of BL-16A. A STARS server and motor driver
clients (written in Perl) are running on the STARS server
PC (FreeBSD). STARS clients (written in Visual Basic)
and LabVIEW are running on the users’ terminal PC and
are connected to the STARS server directly. SPEC (a
UNIX-based software package for control and data
acquisition), which runs on the PC for A2, is connected to
the server through a SPEC interface program of STARS.

Server
FreeBSD

BL-16A1
Windows XP

BL-16A2
LINUX

STARS
server

Motor
driver

Motor
driver

SPEC
interface

SPEC

LabVIEW

VB

VB

STARS CLIENTS AND UTILITIES
Connection of STARS is easy, and STARS users can

develop an effective system by writing simple client
programs. The STARS interface library and multipurpose
STARS clients provide high-performance development
resources for STARS users. Recently, STARS has been
equipped with several library modules (a Perl interface
module, C interface library, and ActiveX control for
VB6) and multipurpose STARS clients (a logger,
logreader, and sequencer).

Perl Interface Module
The Perl interface module of STARS provides simple

connection to STARS. An example of its usage is shown
below.

#! /usr/bin/perl

use stars;

#my node name.
$NodeName = 'sample_client';

#Hostname of STARS server.
$Server = 'localhost';

#Connect to the STARS server.
$tak = stars->new($NodeName, $Server)
 or die Could not connect Stars server”;

#Send a message to a client named “Dev1”.
$tak->Send(“Dev1 getdata”);

#Receive a message from “Dev1”.
$rt = $tak->Read();

#Print result
print “$rt\n”;

#Exit, processes of closing connection, etc. are
performed automatically.
exit(0)

Sequencer
The sequencer is one of the multipurpose clients of

STARS. The sequencer executes scripts upon request
from other STARS clients.

If a client sends a command which requires the
execution of a script, the sequencer reads the
corresponding script file and executes it. The sequencer
accesses I/O clients, if necessary. Finally, the sequencer
returns the result to the client. Figure 7 shows an image of
message transfer between STARS clients and a sequencer.
Script commands are definable by users and script files
can have a hierarchical structure.

Figure 5: BL-16A hardware and network.

Figure 6: Layout of STARS clients and server at BL-16A.

2005, Hayama, JapanProceedings of PCaPAC

Script

Script

Script

STARS
(Simple Transmission

and
Retrieval System)

Sequencer

Scripts

Client (GUI)

Client (I/O)

(1)
(2)

(3)

(4)

(5)

FEEDBACK TO COACK
The hierarchical structure of script commands on the

sequencer can be accommodated by the COACK virtual
machine, which has a hierarchical structure (Figure 8),
and various functions can be added by editing script files.
Then the sequencer is able to have one of the functions of
COACK (the COACK virtual machine).

Script

Script

Script

Recently, STARS has been running stably on various
control systems, and the development and maintenance of
its clients and server are continuing. STARS is effective
for the development of the next version of COACK.

REFERENCES
[1] T. Kosuge, et al., “COACK Multi-Server System

with STARS”, PCaPAC2002, Frascati, 2002.

[2] T. Kosuge, et al., “COACK Application for the
Beamline Interlock System at the Photon Factory”,
PCaPAC2000, Hamburg, 2000.

[3] I. Abe, et al., “COACK-II Project on Accelerator
Control Kernel Development”, ICALEPCS '99,
Trieste, 1999.

[4] T. Kosuge, et al., “Application Server and Pushing
Technology on COACK-II”, ICALEPCS '99, Trieste,
1999.

[5] I. Abe, et al., “Recent status on COACK project”,
PCaPAC2000, Hamburg, 2000.

Figure 7: Sequencer. Figure 8: Hierarchical structure of sequencer and COACK

CONCLUSION

virtual machine.

2005, Hayama, JapanProceedings of PCaPAC

