
NEW FEATURES FOR NEW APPLICATIONS WITH ABEANS 3.1

Andrej Košmrlj∗, Igor Križnar
Jožef Stefan Institute and Cosylab Limited, Ljubljana, Slovenia

Abstract
Abeans are Java-based client framework for building

control system applications. Cosylab has set as its primary
design goal the ability to adapt them for a wide range of
underlying architectures. By relying heavily on object ori-
ented modelling, we have modularized them vertically into
services, such as logging, exception handling, configura-
tion and resource management; and horizontally into lay-
ers, such as plug layer, modelling layer and presentation
layer. Portable generic applications as well as deployments
in ANKA, ALMA, GSI, DESY, Diamond and SNS demon-
strate that the basic premises of the design were sound.

In this article we discuss, using a specific example of
Control Desk application (a generic table application) de-
veloped originally for Diamond, the main features avail-
able by the generic nature of Abeans. We address the basic
question of how to trade flexibility for performance, and are
careful to distinguish various kinds of overhead (one-time
initialization, memory footprint, CPU consumption etc.).
Strategies used in Abeans to improve performance of Java
are presented.

INTRODUCTION

We will present what Abeans [1, 2] are today starting
with explanation of the basic concepts of Abeans: models,
plugs, services and CosyBeans. We will continue by pro-
viding a quick glance into the benefits and challenges one
is faced with when using EPICS control system and then
show how plugging Abeans to EPICS CS facilitated find-
ing a particular solution for a given issue. We conclude by
addressing the basic question of how to trade flexibility for
performance and presenting strategies used in Abeans to
improve performance of Java.

BASIC CONSEPTS OF ABEANS

Given some complex software system, let us say a dis-
tributed system or for example a database, Abeans can
firstly be used to build a model of the complex controlled
system, secondly to build a plug for communication with
the complex system and finally to organize services not re-
lated directly to the complex system, but to task of appli-
cation building. In addition, a separate part of Abeans is
dedicated to the visualization of remote data – this part are
the CosyBeans.

∗andrej.kosmrlj@cosylab.com

Model
Abeans provide the building blocks for constructing an

object-oriented representation of some complex system. A
model is a set of Java classes that represent the compo-
nents of a given system, and those classes are common to
all systems from a certain functional / problem area. In
other words, in order to control physical devices such as
power supplies, vacuum pumps, etc., Abeans declare, for
each physical device, an object instance in the OOP sense,
and define the life cycle, containment and relation to other
services.

The first model that was implemented was theChan-
nel model– the remote data is accessible through separate
channel objects and is well suited to model systems that
are flat (not organized hierarchically), like for example in
EPICS or TINE protocols. There is one model for all chan-
nel based systems (not a separate model for TINE channel,
and EPICS channel).

The second is theBACI model – here a set of properties
can be part of a hierarchical entity, for example a device,
that mirrors the logical structure of physical devices, like
power supplies. The main point is that the device is a Java
object. This model was primarily developed for ESO and
uses ACS CORBA plug below it.

Plug
A plug is that part of the Abeans system that is respon-

sible for translation of requests originating in the GUI to
a communication protocol used by the control system and
for the interpretation of responses produced by the remote
system. The purpose of the plug was to keep the interac-
tion with GUI constant, while allowing for communication
protocol to change.

So far, we have implemented plugs for TINE protocol for
DESY at Hamburg, EPICS plug that communicates to the
JCA library, UFC plug for the protocol used at GSI, and
ACS CORBA plug for ESO. We have also implemented
SOAP plug for DESY that communicates via SOAP pro-
tocol to Abeans web service that communicates further
through another plug. This plug was done as a research
process and is currently not used in any deployed applica-
tion.

Service
Although two Abeans applications that use two models

for the control of two software systems differ in their ba-
sic purpose, they still contain a lot of shared functional-

2005, Hayama, JapanProceedings of PCaPAC



Figure 1: Control Desk application.

ity. Error reporting, logging, resource loading, configura-
tion management and similar tasks can be delegated to a
body of shared services, which is implemented once and
for all. This approach reduces the amount of coding and
guarantees consistent behaviour, look and feel and simi-
lar functionality across all applications developed with the
Abeans framework.

So far we have implemented the following services: con-
figuration service, data resource service, debug service, ex-
ception handler service, report service and thread pooling
service.

Abeans also offer standard interfaces for access to dis-
tributed services (i.e. services provided on remote ma-
chines), such as distributed naming service, or a distributed
archive. We used existing technologies where possible: for
example, access to object directories (such as TINE Name
server or ACS Manager) is done through standard JNDI
(Java Naming and Directory Interface). Consequently, it is
possible to develop a directory browsing Abeans applica-
tion, which will run on all Abeans plugs – this is the Object
Explorer. Similarly, distributed archive service can access
archive data in remote archive servers. Archive reader ap-
plication developed for DESY uses this service of Abeans.
However, since the same service will be implemented for
EPICS as well, we will be able to reuse the same applica-
tion to access EPICS archives.

CosyBeans

Where the path of the data item sent from the control sys-
tem ends in Abeans, it continues with CosyBeans. Cosy-
Beans are basically a data visualization library. As such,
they consist of GUI components for display of single val-
ues of different types (doubles, bit-patterns, etc.), and for
display of multiple data items (charts, tables and so on). To

couple the GUI components of CosyBeans – which can be
used as standalone GUI components without any reference
to Abeans libraries or other libraries – to their data sources
(in our case Abeans), we provide Adapters.Adaptersare
thin pieces of software that connect, on one hand, to the
Abeans models and on the other hand, to GUIDisplayers
that take care of actual data rendition. In general, Adapters
could connect, instead of Abeans, to some other data source
as well.

In addition to control system specific displayers and
adapters, we also provide a bunch of stand-alone compo-
nents for writing applications with Swing. These include
enhanced swing components like button, text field, number
field, table, active tree, etc. with additional features and
performance improvements relevant to physicists. Some
of the components were also developed from scratch, for
example Spike chart, a high-speed chart built on the expe-
rience gained from long-time experience of our group with
Java, About dialog, panels for reporting messages and ex-
ceptions and the like.

ISSUES RELATED TO EPICS CONTROL
SYSTEM

EPICS has a flat structure of its database. The central en-
tity is the Process Variable (PV). The only way to define a
functional container for PVs, i.e. a device, is to use a nam-
ing convention or to provide additional data stored in some
sort of a database. Both approaches require the application
developer to look for additional sources for the data, reduc-
ing transparency.Is there a way to provide hierarchical data
to the application developer so that s/he would not have to
know and explicitly search for additional information about
the hierarchical structure of the control system?

2005, Hayama, JapanProceedings of PCaPAC



In addition, the names of the PVs in EPICS applications
must be hard-coded, there is no general way to browse for
all the channels on the network.

ADDRESSING THE ISSUES FOR
CONTROL DESK APPLICATION

In this section, we will try to explain how each issue
from the previous section was addressed using Abeans in
Control Desk Application1. This is basically a generic ta-
ble application developed originally for Diamond that has
several possible views. It is able to interpret the EPICS
channels in a flat way, or in a hierarchical way by grouping
them into devices. In the first case, each row represents a
channel, and each column represents a (optionally specifi-
able) field of that channel. In the second case, each row
represents a device, and each column displays a ”default”
field of a channel constituting the device.

Introducing hierarchies to EPICS

Abeans directory is a service that allows the application
developer to do a lookup of the structure of names of re-
mote objects. For example, available EPICS channels may
be arranged into a sort of naming hierarchy based on some
criteria (physical layout of the remote system, etc). Abeans
plug for EPICS is responsible for providing information to
the Abeans directory – the plug obtains hierarchical infor-
mation from the naming convention defined in some XML
file.

Abeans directory allows the developer to browse all
available names for this plug, as if they were placed in a
tree. The implementation of Abeans directory is in accor-
dance with the JNDI specification which is a Java core plat-
form. The added value for the developer is an intuitive and
standard way to access the hierarchical data and not having
to worry where the data comes from. Furthermore, the tree
already has a GUI component that is able to represent it,
the Cosy Navigator, which is a part of CosyBeans, and is
displayed on Figure 2.

Once the plug fills up the JNDI tree, the application can
browse it and get all the channel names without having to
know them in advance, thus eliminating the need for hard
coding the names in the client application. The directory
actually contains meta-information about a named entity
that can be accessed without actually making a connection
to that entity. [3, 4].

Abeans can bring OO devices to EPICS

The discussion above refers to obtaining the references
to channel names and constructing the channel objects, all
the time using the Channel model. However, by having
access to hierarchical data, it is possible to develop the
idea further – to construct a logical representation of the
device on the OO level. For example, one can have an

1see fig. 1

Figure 2: Cosy Navigator, a GUI component used to dis-
play and manipulate hierarchical device data.

object of typeIonPump and access its properties (PVs)
without having to explicitly connect to them or to know
their names – once the user constructs theIonPump object,
s/he can retrieve its pressure property solely by invoking
ionPump.getPressure().getValue().

In addition to properties, a device can also define ac-
tions: functions that can be invoked directly on the device:
instead of having aPOWER property set toON andOFF enu-
meration (effectively, writing 0 and 1 into it), actions can
be invoked as calls to the functions on theIonPump de-
vice: ionPump.on() andionPump.off(). Internally, the
device object should map these calls into setting the appro-
priate values on thePOWER PV.

In Control Desk application we didn’t go all the way
to the Device model, but we made some intermediate
step. In Abeans we introducedPropertyGroup which
is a logical representation of the device and can also
define actions via naming convention defined in some
XML file. To keep PropertyGroup as generic as pos-
sible value of the device’s properties is obtained like
ionPump.getProperty("pressure").getValue()
and actions are invoked like
ionPump.executeCommand("on"), where the appli-
cation can browse the JNDI tree to get all available
properties and actions.

STRATEGIES USED FOR IMPROVING
PERFORMANCE

In this section we will briefly describe what performance
problems arose during development of Control Desk appli-
cation and how did we cope with them.

2005, Hayama, JapanProceedings of PCaPAC



Memory footprint

Typical EPICS control system for a particle accelera-
tor defines a large number of devices and their proper-
ties, but many of these devices are structurally the same
(e.g. several ion pumps, magnets, power supplies, etc.).
Each device is characterised with a modelling element de-
scriptor in Abeans directory which describes meta infor-
mation: names of the channels, commands and application
attributes. It is easy to see that common meta descriptor
for all structurally the same devices significantly reduces
memory footprint. This is easily achieved if we have very
strict naming convention (e.g. names of structurally the
same devices and their properties differs only in prefix),
but Abeans directory can handle even arbitrary names of
devices, because there is a mapping between name of de-
vice and its descriptor. EPICS plug takes care that struc-
tural description of devices read from XML file is correctly
represented in Abeans directory. XML structure already
helps EPICS plug a lot, because we first define appropriate
types (e.g. ion pump, magnet, power supply, etc.) with the
whole structure. When we finally declare some instances
of devices, we can define only its name and type.

Trading memory for speed

Abeans allows creation of several channels that map to
the same PV in EPICS database. In this case plug creates
a single PV that stores in cache all channel characteristics2

(e.g. maximum, minimum, etc.) that are assumed to be
constant all the time. Next time one of this characteristics is
requested its value will be returned immediately and there
will be no remote investigation to the EPICS database.

For a particular PV we must know its record type, so
that a correct displayer will be used to present it. If we
don’t know the type of a PV, than we must synchronously
connect to the PV and query for it. The solution to that
problem is that we can specify type of the PV already in
the XML file. For every PV we store in memory additional
String but this improves speed up to 5 times.

Further speed optimizations

When coding, synchronous requests are much easier to
implement, but it turned out that asynchronous requests are
much more efficient, when we want to accomplish sev-
eral requests at the same time. This is especially true for
GUI adapters: they practically have no choice, they must
use asynchronous requests because GUI must be respon-
sive all the time. One must be aware that asynchronous
calls should not significantly increase number of threads. If
we have many threads, CPU consumption will drastically
increase and CPU will spend most of the time switching
between running threads instead of doing some useful job.
JCA [6] interface for communication with EPICS database
contains only asynchronous calls, which means that the

2channel characteristic is always mapped to a certain PV field in
EPICS database

plug has no need to create any additional threads for asyn-
chronous requests. This also means that plug must create
a workaround for synchronous requests: this is obtained
by standard Javasynchronized, wait andnotify meth-
ods. It turns out that Channel Access for Java (CAJ) [7] im-
plementation of JCA interface is much more efficient than
standard JCA implementation.

Further optimization is grouping requests as much as
possible, especially for channel characteristics, because
JCA interface contains methods for grouping remote calls,
which turns out to be more efficient. Grouping requests
for channel characteristics is important because we can get
almost all relevant PV fields with a single call to JCA.

CONCLUSION

In the article we have presented how generic nature of
Abeans can be used to address issues related to EPICS
control system. This was used also in Control Desk ap-
plication. Some features that were added to Abeans for
EPICS, can be used also for other control systems. Abeans
directory is already widely used in many applications,
PropertyGroup can also be used for TINE and other sim-
ilar control systems.

We introduced several strategies that were used to im-
prove performance of the application, but we must con-
tinue doing so. At the moment we have problems during
massive connection requests. Control Desk application can
handle up to about 500 channels connection requests in one
session. Most of our improvements were on the side of
the plug. Now we need to find some improvements inside
Abeans themselves and recently some minor improvements
were already done. For example, the table application for
APS Booster project can already handle up to about 2000
channels. Maybe the recent evolution of Java Virtual Ma-
chine [5] will be useful on our path.

REFERENCES
[1] I. Verstovsek, et al, “The New Abeans and 

CosyBeans: Cutting Edge Application and User 
Interface Framework”, PCaPAC 2002, Frascati, Italy, 
October 2002 

[2] I. Verstovsek, et al, “Abeans: Application 
Development Framework for Java”, ICALEPCS 
2003, Gyeongju, Korea, October 2003 

[3] M. Plesko, et al, “Where and What Exactly 
in ”Knowledge” in Control Systems”, ICALEPCS 
2003, Gyeongju, Korea, October 2003 

[4] G. Tkacik, et al, “A Reflection on Introspection”, 
ICALEPCS 2003, Gyeongju, Korea, October 2003 

[5] G. Tkacik, “Generic Types in Java: Abeans<T> 
Specifically for You, Mr T?”, PCaPAC 2005, 
Sokendai, Japan, March 2005 

[6] http://www.aps.anl.gov/xfd/SoftDist/swBCDA/jca/ 
 index.html 
[7] http://caj.cosylab.com/ 

2005, Hayama, JapanProceedings of PCaPAC


