
GENERIC TYPES IN JAVA: ABEANS<T> SPECIFICALLY FOR YOU, MR T?
G. Tkačik, Cosylab, Ljubljana, Slovenia

Abstract
Java 1.5 is not merely a revised Java 1.4 – it is an old

language reborn to incorporate generic types, similar to
C++ templates, and a host of various new improvements.
Abeans, a client-side software library for modelling
complex control systems, has been trying for several
years (and three major releases) to strike a balance
between ease-of-use and the capability of running on
various control system architectures. More specifically,
we designed custom solutions based on introspection,
meta-data processing and code generation in order to
foster existing and new Abeans deployments on diverse
machines. New Java features will drastically reduce the
code footprint and improve code clarity by generalizing
naturally over atomic data types in the control system; by
incorporating meta-data relevant for generic applications
and code generators directly into source code itself; and
by allowing Abeans code to monitor and modify itself
during execution, a feature impossible to implement in
pure Java before version 1.5. We believe that, if used
properly, such advanced functionality can be a blessing to
control system programmers. Consequently we discuss
specific examples where the whole community can
benefit from it and show how new concepts will be
incorporated into future Abeans releases.

INTRODUCTION
Let me start by quoting from a recent article on

JavaWorld that discusses lessons learned from experience
with Enterprise JavaBeans up to version 2.1 While
pointing out great successes of EJB, it notes that:
“…However, EJB, a core component for middleware in
the J2EE stack, has gained the reputation of being too
complex and difficult to use, especially for small to
midsize business applications. The overhead of EJB
infrastructure code and deployment descriptors drains
both server resources and, more importantly, developer
productivity. Developers often end up writing and
maintaining more infrastructure code than business logic
code.” [1] To remedy the situation, it points out that
development should be driven along the following three
guidelines: “(Firstly), the framework should not impose
an arbitrary component model to developers, as such
models break the object-oriented design structure. In
other words, the framework should support POJOs [2]
that developers can extend and reuse inside and outside
the application container. (Secondly), the framework
should eliminate the need to manually write verbose and
often excessive EJB deployment descriptors. A POJO
should be able to simply declare what container services
it needs. (Finally), the framework should support local
access to the POJOs by reference. Java object
serialization is slow and should be avoided when possible,
especially for most small to midsized applications.”

This lengthy citation illustrates exactly the problems
faced by control system community when it wants to
develop portable software suites that can run on multiple
platforms as opposed to specific solutions (specialized
application in one lab), see “Lessons learned so far” [4].
While we are not placing so much emphasis on
transactional, persistence and security aspects (yet), we
are creating a system that models any machine (as
opposed to a business process) and provides a range of
services that often cannot be turned into components,
since they are interwoven into the business logic code [3].

More specifically, creating Control System Office
(CSO) will involve the definition of basic data types
exchanged between the application and underlying layer,
the parameterization of data sources (sources which
provide data from the remote side) and data sinks
(application components), and the common views and
actions that operate on these data [4]. While modeling the
operations over data is clearly an established OOP task,
the inability or unwillingness of the community to start by
abstracting away the details of the underlying system (as
is the case of Abeans Release 3 plugs and models),
coupled to the learning and performance overhead carried
by abstraction of this kind, makes us seek for another
solution: using meta-data to enable the office components
to talk to the underlying system without trying to force it
to conform to some predefined (and often limiting) design.
As a consequence worthy of note, however, we lose the
strict vertical separation of layers, and now the underlying
layer details become coupled to the application code.

For example, there are the “grand-problems” of
creating and describing hierarchy in an uniform way even
if unsupported by underlying system or handling different
models of data acquisition, such as synchronous and
asynchronous; as well as a big number of seemingly
smaller but nevertheless crucial differences in the ways
people represent timestamps, completion codes,
conditions for value-delivery update and so on. We will
try to demonstrate how Java 1.5 Annotations, JMX and
Generics can help develop a CSO without insisting on
standardization of such issues (which seems unlikely).
Our goal is then to retain access to the underlying
functionality without remodeling it, but getting rid of the
syntactic coupling; e.g. CSO should be able to talk to
either channels of various kinds or even devices with
minimal assumptions about their structure, but should not
use directly the syntax of the underlying system.

GENERICS
Generics are parameterized types very similar to

templates in C++. Learning by example is probably best,
therefore let’s look at the classic use in containers:
List<Integer> myList = new

LinkedList<Integer>();
myList.add(5);

2005, Hayama, JapanProceedings of PCaPAC

Angular brackets denote a parameterized type, in this
case a version of linked list that holds only integers. On
second line you can notice automatic conversion between
primitive (int) and its Object type (Integer), and the third
line demonstrates the new foreachloop format. There are
many good references for generics on the web [5], and we
will not discuss their syntax further here.

Beyond standard benefits of their use (compile-time
checks vs. run-time ClassCastExceptions when used with
collections), there are two specific areas where generics
can play a big role in CSO, namely modelling elements
that depend on data type (such as channels) and
management and use of metadata using Java reflection.

Currently, Abeans datatypes library that defines
channels contains a lot of repetitive code: there are
separate classes for DoubleChannel, LongChannel,
StringChannel and so on. While this was a design
decision that should increase the performance (by
avoiding casts to Object) and readability, it also resulted
in considerable code bloat, and the synchronization that
keeps a DoubleChannel sematically aligned with
LongChannel is done by hand. An equivalent generic type,
which for simplicity contains just a mutator and accessor
for the dynamic value [6] is clearly

For example, one might declare channel template that
works with numeric types as follows:

This relatively straightforward example (which does
not become much more complicated in practice) is a
showcase for how generics decrease the codebase by a
considerable factor. The other significant use is in
declaring and manipulating metadata. Since using
metadata is generic, its use on the modelling layer is
carried out through Java dynamic mechanisms. If you
have used classes from java.lang.reflect, you realize that
up to now such code has been overflowing with class
casts, dynamic type checks (Class.isAssignableFrom())
and ultimately resulted in an unreadable jungle that
required a lot of debugging. Since Java 1.5 Java reflection
has itself been redefined with generics, so that now, for
instance, a Class is actually Class<T>, where T is the
class being described. Paralleling this structure of a class
T and its “meta-description” Class<T>, Abeans have
been using the notion of descriptors stored in the directory
for all modelling elements. For example, for interface
Channel there has been an equivalent ChannelDescriptor,

which enumerated requests that can be done on a channel,
as well as the constituents of a channel [7].

From Java 1.5 onwards, the Descriptor can become a
generic type, so that a descriptor for a channel can be
Descriptor<Channel>. To see how this makes dynamic
invocations much safer and clearer, suppose that one
would want to create a factory for channel objects based
on the type described by the descriptor:

Notice how generics allow one to express the
requirement that the argument of the generic method
(which itself is a generic type Descriptor<T>) must
match the return type of the method, which is T. Prior to
generics, this would be very cumbersome, as one would
have to invoke something like:

and the implementation of newInstance would have to
introspect cd, find its class, and somehow from the class
name infer what the run-time type of the return value
should be (e.g. one would take the class of cd, which is
ChannelDescriptor.class, get its name, rip off
“Descriptor”, and do a Class.forName() for “Channel”,
and create a new instance of that). Without generics, this
would be a breeding ground for errors, as well as being
difficult to learn for beginners.

Speaking on a more general ground, Java generics are a
convenience, reducing the number of casts and improving
type-safety of the code, but bringing no fundamental new
ways of programming. This is in stark contrast with C++,
where templates that are expanded by specialization
actually allow things that could not be done before (such
as template compile-time programming). Nevertheless,
the difference in practical use of generic versus non-
generic programming in Java will be immense, because it
works so well with introspective features that are
nowadays so widespread in the code because of their
power to tie framework components together.

In accordance with the conclusion that excessive
modelling should not forced onto the existing models
(such as EPICS channels), the Control System Office [6]
design would call for only two basic modelling elements,
Target and Namespace, and their respective descriptors
Descriptor<Target> and Descriptor<Namespace>. In
the directory, each name would be bound either to the
target descriptor (if the name was a leaf node in the
directory tree; target nodes are capable of processing
Requests) or to the namespace descriptor, if the node is
not a leaf. For example, abeans-
EPICS://linac/ps1/current/value could be bound to
Descriptor<Target> and could process get requests, set
requests and so on; in contrast, abeans-EPICS://linac,
abeans-EPICS://linac/ps1 and abeans-
EPICS://linac/ps1/current would both be bound to

for (Integer number : myList)
 System.out.println(number);

interface Channel<T> extends Model
{
 public T getValue();
 public void setValue(T newvalue);
 …
}

interface Channel<T extends
java.lang.Number>
{
 …
 public T getMaximum();
}

interface ModelFactory
{

public static <T extends Model> T
newInstance (Descriptor<T> desc, URI
target);
}

Channel ch =
(Channel)myFactory.newInstance(cd,
“target”);

2005, Hayama, JapanProceedings of PCaPAC

namespace descriptors. Although all functionality can be
accessed from these directory entries, it is possible now to
introduce a notion of types.

Let us declare a Channel extends Namespace, and
associate with it Descriptor<Channel>. Create a node
abeans-types://Channel that is bound to
Descriptor<Channel>. Since a channel is a namespace, it
should contain targets, such as value (a dynamic value),
maximum (an example characteristic) and so forth. Now
instead of putting into abeans-EPICS subtree, for each
channel, its whole structure (i.e. value, minimum and so
on), just say that abeans-EPICS://linac/ps1/current is-of-
type Channel. In [6] we have discussed how is-of-type
relation itself can be implemented in the directory, which
finalizes the introduction of types in such a way, that even
if the application is unaware of their existence, it will still
work (i.e. an application-initiated request to look up the
directory for abeans-EPICS://linac/ps1/current will find
out that this is entity of type Channel, which is composed
of current and maximum, among other things, and this is
what the application will get returned for its query; the
resolution to go from abeans-EPICS to abeans-types
being done completely within directory code unknown to
the application). Even though such manipulations would
be possible without generic types, they would be simply
to cumbersome to manage.

ANNOTATIONS
The second new feature that we discuss in detail is Java

annotation mechanism, defined by interfaces in java.lang,
java.lang.reflect and java.lang.annotation. The simplest
description of an annotation is that it is a piece of
information, attached to a Java introspectable element: a
package, a class or an interface, a method, a constructor, a
method parameter and so on. Such information is inserted
into Java code with a special notation that we touch on
later; it can be maintained in class files and JVM and
introspected during runtime. For example, I might tag all
methods of my class that do risky things with a
@RequiresAuthentication annotation; any user, supplied
with my jar file will later be able to ask JVM, for each
method, if it is annotated with @RequiresAuthentication –
and moreover, that user might write the code that pops up
a window asking for username and password whenever
such method is encountered in the execution flow.

Annotations in Java are actually much more powerful
than simple tags, such as @RequireAnnotation [8]; they
can be defined in a way similar to interfaces, and can be
constructed with arguments. For example, consider
defining the following annotation:

If there is a feature request for a certain class X, I can
place in front of the declaration of X into Java code the
following snippet:

@FeatureRequest { ticketID = 20; synopsis = “Add
another feature request annotation here”; owner()
“gtkacik”; }

It is important to realize that the feature request
information gets packaged into bytecode, and is now
available to tools that introspect such code (one tool
called apt is provided with Java 1.5).

There were several motivations for the inclusion of
annotations into Java standard: firstly, they provide great
means of automatically processing code documentation,
as a vastly more capable javadoc tagging system.
Secondly, they make writing code generators much easier
– there is a lot of boilerplate code required by J2EE,
CORBA, RMI and so forth, and keeping all files in sync
(IDL, XML descriptors, remote interfaces) was getting to
be bigger and bigger burden. And lastly, annotations offer
a way of doing aspect-oriented programming, changing
the context in which the code gets executed. It is
important to realize that annotations should not change
the basic functioning of the code: this is up to the actual
implementation. But consider a classical example: two
updates to a database can be done with or without a
transactional context (i.e. guaranteeing that they both
succeed, for instance). However, the programmer that
codes these database accesses might not know who the
persistence provider will be (and if transactional update
will be available when the code is deployed). Now it is
possible to annotate his or her method with, suppose,
@Transactional, indicating the intention that transactions
should be used if they are available, but not polluting the
code with programmatic use of transactional API and not
introducing compile-time dependencies on it.

The general scenario is as follows. In a system such as
CSO, there will be components produced by different
programmers, and deployments that have widely varying
requirements. In a medical accelerator one might need to
make sure that all remote requests are transactionally
stored into the database for later tracing; or that each
method that changes the irradiation dose requires
authentication. Without annotations, all such methods
have to access the framework in code: the programmer
needs to know how to access the tracing or security
service, which has to have fixed API, has to be
instantiated in a well-defined initialization procedure
prior to code execution and so on. These so-called “cross-
cutting concerns” are a point where pure OOP starts
failing to provide replaceable and independent
componentization.

With annotations, one writes one’s own code as POJO
(plain old Java object) that does not reference framework
functionality. If such framework support is desired,
however, the appropriate methods, classes, parameters
and any other relevant elements get annotated by the
programmer; and when the code is being executed and if
the requested services exist in the framework [9], actions
appropriate for each annotation are taken
(“@Transactional” methods get recorded into the
database, “@Authenticated” methods ask for credentials,

public @interface FeatureRequest
{
 int ticketID();
 String synopsis();
 String owner();
}

2005, Hayama, JapanProceedings of PCaPAC

and maybe the annotation also carries information about
what level of authorization is needed, for instance).

Such mechanism is vastly useful for Control System
Office. Consider two applications, for example. One
requires not only the dynamic value data (such as currents
in 100 power-supplies), but also the accompanying
Quality-of-Service (QoS) data that exists in Abeans
currently for all data sources (the timestamp of the last
acquisition, completion and alarm codes, ID of the data
source, error stack and so forth). The other application
requires just quick access to values for a large number of
devices. In this case it would be very convenient if the
programmer of the application were able to tell the
framework that keeping track of all QoS baggage is just
an overhead. Currently, this could be implemented either
by making some sort of configuration switch (in which
case the programmer has to know how to deal with
configuration files and service) or invoking a certain
method somewhere in the framework. The point is that in
both cases something has to be “switched” in a place
other than in the actual application itself, and it creates a
dependency (either a knowledge dependency of the inner-
workings of the configuration or an actual compile-time
one for API reference). Making an annotation in front of
the application class is much easier, and it is also stored
along in the same Java source file.

In addition, annotations can be used to give data
semantic meaning, in case where it is not obvious from its
syntax. We have argued in [4, 7] that in CSO setting, it is
important for various components to know how to
interpret the data: an array of doubles can be a profile
indexed by device, or a time series of values from a single
device, and visualization of each is different (for a trivial
difference, consider how would one render the x-axis in
both cases on the chart). Annotating can be used to supply
additional data on various levels of detail (the highest
being the annotation of method parameters for each
method)

CONCLUSION
Remembering the quote that opens the introductory

section, we see that even in J2EE created by professional
programmers, the issue of complexity of use was a
serious drawback for the users. Abeans Release 3 face
similar issues, all stemming back to the fact that Abeans
try to accommodate various communication layers below
and arbitrary application models above. The solution
taken in R3 was to abstract all data exchange to the
common denominator, i.e. through plugs and Abeans
Engine Request/Response mechanism. On top of this
engine, Abeans build their own models, namely the
Channel model and the BACI model.

One can imagine that using the same design principles
to create an office suite, a task of larger proportion, given
the programming know-how resources of Cosylab and our
field, would be an overwhelming task; even if successful,
the creation of applications for such office could prove
too cumbersome. It is therefore our proposal to leverage

new Java technologies, such as generics and annotations,
together with a new set of design principles laid out in [7].
The goal of the endeavour would be to create a set of
data-source and data-sink components, living in an
existing framework (such as Java JMX), tied together by
meta-data stored in a directory. Office applications
therefore become pieces of code that create bindings
between sources (managed by next generation of engine
that talks directly to communication layer such as CAJ)
and sinks (visual components, for instance), and use
annotations to specify details for these bindings.

Control System Office would then become much more
loosely coupled collection of objects, and annotations
would finally provide the mechanism for what we have
desired to do before but lacked means of doing so:
moving as much as possible from executive to declarative
syntax. Of course, not everything is reducible to
declarative form – algorithms (equivalent to J2EE
business logic) are not; however, a large majority of
applications consist of shuttling the data around and
playing with its packaging, format and delivery options,
which should be representable best by mechanisms
specifically tuned for doing this: XML for persistent
storage of components, directory for run-time storage of
components, and annotations for both persistent and run-
time storage of cross-cutting (aspect) oriented metadata.

REFERENCES

world/jw-02-2005/jw-0221-jboss4.html
[2] POJO stands for Plain Old Java Object, i.e. a

component that can exist outside framework and is
not encumbered with framework classes or interfaces
that it has to extend or implement.

[3] See http://www.jroller.com/page/colyer/20040531 for a
good explanation of Aspect Oriented Programming
concept of weaving.

[4] G. Tkačik, Beating Commercial Products: Control
System Office and Integrated Development
Environment Are The Way To Go, PCaPAC 2005,
Sokendai, Japan

[5] http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf, Sun’s
tutorial on Java generics

[6] For definitions of dynamic value, characteristics and o
ther concepts relating to datatypes, see Abeans Datat
ypes Specification http://www.cosylab.com/abeans/datat
ypes-common/apidocs/index.html

[7] G. Tkačik et al, “A Reflection on Introspection”,
ICALEPCS 2003, Gyeongju, Korea, October 2003

[8] Note the at-sign @ prepending the annotation name: it
looks very similar to the javadoc tag: indeed,
@Deprecated is now a regular Java annotation that
can stand in front of deprecated methods, for instance.

services; however, the purpose is to reduce 1-to-n
requirement (1 logging service to n references to it all
over the code, for example) to something simpler.

[1] Dr Michael Juntau Yuan, http://www.javaworld.com/java

[9] One cannot, of course, get rid of all references to the

2005, Hayama, JapanProceedings of PCaPAC

