
STATUS OF THE TTF VUV-FEL CONTROL SYSTEM

K. Rehlich, DESY, Hamburg, Germany

Abstract
The second phase of the TESLA Test Facility (TTF) at

DESY started recently the operation. TTF was built by an
international collaboration as a test bench for super
conducting cavity technology. In addition this linear
accelerator will be operated as a VUV-FEL user facility.
The FEL needs a sophisticated diagnostics with a single
bunch and shot to shot resolution and a high demanding
data transfer rate. On the other hand the control system
has to provide the flexibility for the test facility.

As a further requirement the control system has to
integrate the different systems of the collaboration
partners. This paper gives an overview and describes the
used technologies of the Distributed Object Oriented
Control System (DOOCS) as the integrating part. To
handle the high data rates a novel combination of an
accelerator control system with a Data Acquisition system
(DAQ) has been implemented.

INTRODUCTION
The TESLA Test Facility (TTF) was initially designed

and built as a test facility for superconducting cavity
technology including a 100 meter long linac [1]. During
the last years the accelerator was extended in length to
provide a 1GeV electron beam. Six undulator sections are
installed to operate the machine as a VUV-FEL for user
experiments. In January 2005 the first lasing at a wave
length of 30nm was demonstrated.

This leads to the requirements for the control system.
To test cavities, diagnostics, and to perform numerous
measurements the system has to be flexible. As a machine
for user experiments a very reliable and stable operation
is required. Since this accelerator is a short prototype for a
future XFEL and a linear collider also, the design of the
control system has to take these requirements into account
as well.

Furthermore a FEL requires a high peak current beam
with low emittance and stable operation. This demands a
lot of complex diagnostics. All the values have to be
recorded and stored for later analysis. In case of TTF,
18000 values are permanently stored in distributed
archivers. In addition, a high performance data acquisition
system (DAQ) is under development. First results of the
DAQ are available. A further requirement for the control
system is the automation of the machine operation.
Especially the RF system has a quite high complexity and
the automated setup and fault recovery is helpful for the
linac operation.

TTF was designed and build by the TESLA
collaboration. A lot of contributions from other labs had
to be integrated into the control system. For an operator
and an application programmer the differences of the
different components of the partners are hidden by the
control system.

All these requirements were the motivation to develop
during the last years the Distributed, Object Oriented
Control System DOOCS. The architecture and the main
design ideas are described in the following chapters.

ARCHITECTURE
The DOOCS architecture is based on three main layers.

Application programs with a user interface are in the top
layer. All these programs connect to the other two layers
via a common API. On the lower layer all services with
device connections are located. The layer in between is
called the middle layer and contains higher level services.
Effort was put into a clean division of functions and tasks
in the three layers to crate a manageable system with
clean and simple interfaces.

Most of the common functions in the layers are based
on libraries. This leads to a modular design of the whole
control system. The error handling is an example for this
approach. A library function is provided to set an error
condition of a device that prints a line into the log file.
Extending this function to send in additional message to a
central alarm server is done by adding an additional
feature to the library. The device servers have just to be
recompiled to inherit this new function.

A further design goal of DOOCS is to operate a server
‘self-contained’. Device servers maintain a local
configuration file and archive. This allows to restart a
server with the recent settings after a crash for instance.
Since the servers keep their configuration parameters
local, all parameters are online configurable. Also this is
provided by the library.

DOOCS is fully designed with object oriented
technologies. Device servers are composed by device
objects. Data objects are used to provide the network
access of the device server variables.

The common application programming interface is
based on objects too. It consists of a communication class,
an address class and a data class with the respective
methods to exchange the information on the network.

Figure 1: Object orientation of device servers.

2005, Hayama, JapanProceedings of PCaPAC

Internally the API has implemented four
communication protocols: RPC, Shared memory, TINE
and EPICS. The selection of the protocol is done within
the API by a call to a name server. This name server
provides all server names and protocols to use. It also
delivers the information for online name queries.

All applications and libraries of the DOOCS are
available on Solaris and LINUX operating systems.
DOOCS is partly available on Windows systems as well
[2]. At TTF about 40 VME crates with SPARC computers
and some LINUX PCs are used as front-ends. File and
middle layer servers are SPARC and PC (LINUX) based.

The whole control system was designed from scratch
ten years ago. The experience with TTF demonstrates that
this object oriented design approach is an advantageous
technology for future FELs and linear colliders.

DEVICE SERVER LAYER
A DOOCS device server is a (UNIX) process written in

C++ that controls one or more devices of a certain type.
All device classes are derived from the device base class.
The base class defines a number of properties and
functions to provide a common standard part in all servers,
e.g. the error handling. The individual properties of a
device are accessible on the network. Properties inherit
from a data class. This base data class deals with the
communication to the local configuration file and the
network. The server library contains a large number of
data class types for e.g. floats, data conversion, archives,
filters, and field bus access. Up to now the following field
busses are implemented in DOOCS: CAN, ProfiBus,

RS232, GPIB, TCP, SNMP, FireWire [3], and FNAL
‘Classic Protocol’.

Since DOOCS is a distributed system these device
servers are independent of the network. Each server has
its own local configuration file and archive. In case of a
network failure a server can restart and gets from the
configuration file the most recent parameters like set-
points. Also the archiving uses a local file [4]. In case of a
crashed or hanging server a watchdog process
automatically starts/restarts the device servers. This
watchdog itself is a device server and therefore visible on
the network.

All the standard parts of servers are defined in a library.
This library is multi-threaded to provide ‘soft real time’
with no blocking. Threads and the mutexes are hidden
from the normal server programmer.

Since most of the code of a device server is in the
server library, it is possible to create server C++ code by a
script too. An example of such a script based generation
of servers is implemented for PLCs [5]. In a text file all
data points of the PLC are defined together with the
foreseen property names and data types of the server. The
script reads this file and creates the C++ code and a
configuration file. After a ‘make’ command the server is
started and reads the configuration file to create the
required number of device instances.

Almost 200 different device servers have been written
so far. The applications cover simple digital and analog
IO, communication to complex devices like DSPs [6],
gateways to other subsystems, and adaptation of
instruments.

Figure 2: DOOCS architecture.

2005, Hayama, JapanProceedings of PCaPAC

MIDDLE LAYER
The middle layer in the control system provides a

number of services. A name server (ENS) allows online
name queries and the resolving of host names and
protocols. The first call of a device request in the API
generates a request to the name server. This server returns
all the required information for the API to direct further
requests directly to the corresponding host with the right
protocol (RPC, TINE, ChannelAccess or shared memory).
Several copies of the name server are running on several
hosts for redundancy.

A further middle layer service is a Finite State Machine
(FSM). The FSM is designed by the graphical editor and
code generator (ddd). During runtime the editor shows
the actual active states. State machines are used for the
automation of the operation. An example is a FSM that
controls the complete start-up and restart procedures of
the RF including the determination of the correct loop
phase and the loading of DSP programs etc.

The Alarm server is a further service in the middle
layer. This server receives from all others servers in the
system XML based alarm and status messages and stores
the status in a device tree and in an archive. A Java client
application displays the status and the history of the alarm.
This service is in a test phase and will be released soon.

Furthermore, Web services like an electronic logbook
[7] are implemented as middle layer services. And the
central part of the DAQ system is in this layer as well.

DATA ACQUISITION SYSTEM
The Data AcQuisition system (DAQ) [8] is a novel

integration of the technologies from High Energy Physics
(HEP) experiments and accelerator controls. The main
goal of this project is to

• improve the reliability and to optimize the linac
• correlate data of the user experiments with the

machine
• provide all current machine readings in one place to

be used by feedback processes and measurements
• store the data for off-line analysis

The TTF diagnostics is mainly based on 10 MHz, 14bit
ADCs. The ADCs are sampling every bunch of all
machine shots. More than 700 ADC channels are used to
readout the BPMs, toroids, and RF electronics. The data
is collected by a DMA transfer from VME into a device
server. After processing the data is send to a central
shared memory with a data rate between 10 and 100
MB/sec (Figure 3). Feedback and other processes [9,10]
can be attached to the shared memory and extract selected
values. The ‘collector’ of the shared memory receives the
data and is responsible for the synchronization of the data
that is coming from about 30 VME crates.

A ‘distributor’ sends the data from the shared memory
to an ‘event builder’. This process packs the data in
ROOT [11] files for later analysis by ROOT tools and to
store them on a tape in the computer center via the
dCache system. ROOT is a tool kit developed in CERN
for the HEP community. A ‘run controller’ configures all

the data flow and the linac settings. The configuration
information is stored on an ORACLE data base [12].

The DAQ system was developed by a collaboration of
Cornell, Mitchigan University, and DESY (Hamburg and
Zeuthen) as a ‘GAN’ project. GAN is a concept to build
and operate an accelerator by an international
collaboration with the help of remote tools.

USER APPLICATIONS
As user applications several tools and program packets

are used to operate the TTF VUV-FEL. DOOCS provides
a graphical editor and synoptic display program (ddd).
With the editor graphical displays can easily be designed
without any programming (Figure 4). The elements of the
drawing can be animated. In the example the magnets are
displayed in green if the power is on, red if an error
occurred or grey if they are off. Such an animated magnet
has to be drawn once and is then reusable. The numbers
shown in the figure are BPM readings. By clicking with
the mouse on such a value a new window with a plot of
the archived data appears. This functionality is simply
activated by a checkbox during design time.

Figure 4: The DOOCS data display (ddd), drag and drop

Figure 3: Data Acquisition System.

operation.

2005, Hayama, JapanProceedings of PCaPAC

A further curve might be inserted into the plot by a drag
and drop operation from another value. With the context
sensitive menu it is possible to modify the plot to a
correlation display that displays all the data points of the
two channels in the selected time range. Many other plot
types are available in ddd. With the help of buttons one
can start new windows, overload windows, change data in
devices, start UNIX commands or displays help
information in a Web browser.

Recently Jpeg and Tiff image displays were added to
the feature list of ddd. Images can be static or dynamic
from a file or directly be read from a device server via the
DOOCS API. Image output is also possible. The content
of a window can be saved as Jpeg into a file or directly
into the electronic logbook. Further output can be
generated as Postscript from a print window. This
window can be edited before sending it to a printer.

State machine designs are done with the ddd program
as well. The states and transitions defined in a drawing
are converted into executable C++ server code by use of
the ‘make’ command. When ddd is switched from the edit
to the run mode, the actual active states of the generated
program are displayed together with other values of the
control system.

Further user application packets are:
• MATLAB, is used for

- Simulations, e.g. the RF system
- writing ad-hoc applications
- complex calculations, e.g. emittance
- high level procedures for state machines

• ROOT
- DAQ data analysis
- Special applications, e.g. orbit display

• LabVIEW
- Operates the OTR monitor system
- Used for cavity conditioning and test stands

• Save&Restore Utility to:
- save and reload linac settings and device

configurations
• Java tools for:

- Alarm display
- Spread sheet application
- DAQ run control

• Electronic LogBook
- For machine operation
- To store documents

All data accesses of these programs are implemented by
the standard DOOCS API. For the Java tools an own
version of the API was ported to this language.

CONCLUSIONS
The TTF VUV-FEL is in operation since end of last

year. First lasing was observed beginning of 2005. The
DOOCS control system integrates all devices of the
accelerator, including the contributions from the
collaboration partners, with a standard interface. Except
for a few minor problems with the new installed hardware,
the systems runs very stable. The object orientated and

library based design of the control system was proven to
be well manageable an extensible.

The Data Acquisition system is in its test phase and
data of the linac diagnostics passes the whole system up
to ROOT plots. First experience with this novel design
shows the benefits of the fast central collection of all
machine data for middle layer services and feedbacks.

 The first useful integration of Web technologies for
DOOCS was demonstrated with the electronic logbook.
As a next step the alarm system will be setup with Web
services. More developments in this direction will follow.

With more experience in the operation of the VUV-
FEL further automation will be developed in the near
future. It is planed to further develop the control system
of TTF in the direction of the envisioned XFEL.

ACKNOLEDGEMENTS
The described work was done by the TTF controls

group. I would like to thank all members of the group for
their engaged and very successful work. The data
acquisition system was designed and implemented by the
DAQ collaboration. My gratitude goes to the team
members for the very fruitful discussions and the skilful
implementation.

REFERENCES
[1] Rossbach et al, Generation of GW radiation pulses

from a VUV free-electron laser operating in the
femtosecond regime, Phys. Rev. Lett. 88, 104802
(2002)

[2] V. Kocharyan, WDOOCS: Porting DOOCS to
Windows PC, PCaPAC 2005 (Hayama, Japan)

[3] V. Kocharyan, WDOOCS: FireWire Cameras
Support for DOOCS, PCaPAC 2005 (Hayama,
Japan)

[4] H. Keller, Experience with the Data Archiver in
DOOCS, PCaPAC 2005 (Hayama, Japan)

[5] G. Grygiel, TCP/IP Based PLC Connection to
DOOCS, PCaPAC 2005 (Hayama, Japan)

[6] G. Petrosyan et al, Hardware and Software Design
for the DSP Based LLRF Control, PCaPAC 2005
(Hayama, Japan)

[7] R. Kammering et al, The Electronic Logbook at the
TTF VUV-FEL, PCaPAC 2005 (Hayama, Japan)

[8] V. Rybnikov et al., Data Acquisition System for the
TTF VUV-FEL Linac, PCaPAC 2005 (Hayama,
Japan)

[9] M. Kollewe, Orbit Data Processing using the Data
Acquisition System at the TTF VUV-FEL, PCaPAC
2005 (Hayama, Japan)

[10] E. Sombrowski et al. Wire Scanner Control and
Display Software, PCaPAC 2005 (Hayama, Japan)

[11] http://root.cern.ch
[12] G. Dimitrov, Application of Oracle Database for TTF

DAQ System, PCaPAC 2005 (Hayama, Japan)

2005, Hayama, JapanProceedings of PCaPAC

