
CONTROL ROOM APPLICATION DEVELOPMENT USING .NET*

H. Nishimura1 and C. A. Timossi2, LBNL, Berkeley, CA 94720, U.S.A

Abstract
 Many of the current ALS control room Windows
applications make use of pre-existing ActiveX controls
that encapsulate the detailed logic needed for control of
complex devices in the accelerator. We have found that
this methodology of Win32 application development
based on these controls useful both because they are truly
re-usable and also because they are accessible to most of
the popular development tools available for Windows. We
examine the .NET platform as the basis for future
development.

 EPICS AT ALS ON WINDOWS

Migration to EPICS
The Advanced Light Source (ALS)[1] control system

has been in service since 1991. At that time, it was based
on small I/O controllers built in-house. At this time, the
control system is gradually migrating to EPICS[2] with
IOCs replacing the original controllers. The original
system[3] is still in use in various subsystems including
all the injector controls, but enhancements to the
accelerator are typically accompanied by upgraded
control hardware and software. At this time, most of the
storage ring magnet controls have been moved to IOCs.
Automated controls such as orbit feedbacks have been
supported by Matlab programs with the access to EPICS
channels which will be covered by another paper[4]. Here
we focus on the Windows based operator consoles where
the graphical and interactive programs run for machine
operations. These programs were developed over a decade
in various languages for control of specific machine
functions and must be migrated to EPICS or replaced.

Simple Channel Access (SCA)
The original control system applications were built

using a basic application program interface (API) to get
and set accelerator data. The design goal was to hide the
complexity of callbacks and other asynchronous
mechanisms typical of distributed programming from the
user. In migrating our routines to EPICS channel access
(CA), we made use of a development effort that was
already in progress called Simple Channel Access[5]
(SCA) which had an API that presented a simpler
interface than native CA but also took advantage of the
strengths of CA as a high performance and efficient
network protocol.

SCAcom
SCA for windows was originally deployed as a

Windows dynamic link library (DLL) which meant that

nearly all Windows development tools (and even
Microsoft Office applications) could access accelerator
data. However, each of these applications also has their
own syntax for accessing a DLL creating a management.
An ActiveX control, SCAcom[6], was created to help this
situation. An Active X Control is a DLL with extra
information about its contents that is registered with the
operating system. This extra information can be used by
Active X container applications to discover the
capabilities of the library (such as the names of the
routines and types of parameters). Since most Windows
based applications have container capabilities, programs
such as Visual C/C++, Visual Basic, Borland Delphi and
C++ Builder, and Labview, can access SCAcom routines
using this container mechanism. At this time, SCAcom is
used by most all of the Windows applications involved in
machine and beam line controls.

One optimization for requesting accelerator data is
noteworthy. Often, especially for passive status displays,
it is efficient to group requests for data (this is a capability
fundamental to CA) rather than to issue a synchronous
request for each item one at a time. SCAcom provides a
mechanism to toggle between these two access methods
depending on the requirements of the application.

 Operation of the accelerator and migration from the
current control system to EPICS, has now become
critically dependent on the availability and performance
of SCAcom.

SCAitem
A process variable (PV) in CA is a string used to

uniquely identify data items. This addressing is also used
by SCAcom. For example, here is how to register and
access the item named " SR13C_QF7__AC17".

scacom.addDoubleItem("SR13C_QF7__AC17");
double SP=scacom.getDouble("SR13C_QF7__AC17");

Here scacom is an object of the SCAcom class. Note that
items are looked up by the string representing the PV
(item) name for simplicity.

When the number of items increases, the use of strings
for lookup has becomes an issue. Therefore, on a client
side, a class (not a component) called SCAitem is created
to hold the name as a data member.

With the SCAitem object, scaitem in this case, the
above example becomes:

scaitem.initAsDouble("SR13C_QF7__AC17");
SP=scaitem.getDouble();

In addition to the use of SCAitem, its collection class is
always created wherever multiple items are accessed as a
group.

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC03-76SF00098.

1. H_Nishimura@lbl.gov. 2. CATismossi@lbl.gov.

2005, Hayama, JapanProceedings of PCaPAC

SCAS
SCAS[7] is an ActiveX control providing the

functionality of a CA server but with basically the same
interface as SCAcom. It has been used to give the CA
server functions to application programs that are locally
controlling the devices. For example, Labview programs
locally controlling the beam line devices become
accessible from EPICS by SCAS.

USING .NET

The .NET Framework
 .NET is a major new framework that is destined to be

the default development and application platform for
Windows. .NET and development languages such as C#
have been available for some time for Windows 2000 and
are included with all new versions of Windows XP.
Although current applications will continue to run
unmodified, whether or not they are built using the .NET
framework, we would like to investigate the potential
benefits and performance implications of the new
framework.

The concerns are:
• Compatibility with SCAcom.
• Runtime performance.
• Development tools including libraries.
Here we focus on the first two items.

In contrast to the managed world of .NET where an
application space is subject to security policies set at a
higher level, all the existing libraries and components that
use the Win32 API directly are classified as unmanaged.
There are different ways that can be used in deploying
SCAcom to handle crossing the managed/unmanaged
boundary. We wanted to compare three options for
deploying SCAcom looking for performance differences.
First we examined our current configuration leaving
SCAcom as a Win32 ActiveX control (since ActiveX
controls are backwards compatible with .NET). Second,
we imported the control into a .NET wrapper class.
Finally, we wrote a new .NET class (SCAnet) as a
native .NET class that supports the old SCAcom interface.

SCAcom on .NET
As mentioned above, ActiveX controls are backwards
compatible with .NET. in the sense that, once registered
with the OS, they are immediately accessible to the .NET
platform. In order to check the runtime performance, we
set up the following test case.

We first measure the performance of a client (using
SCAcom) communicating with a server (using SCAS)
where both applications run on the same machine.

The server is a simple Win32 C++ application built on
SCAS fielding 540 PVs to emulate the storage ring
magnet analog values. The length of the names is 19
characters.

Two test client programs were created; one with C++
using SCAcom on Win32, the other with C# by importing

SCAcom to a .NET class (it is straight forward to import
an ActiveX controls to a .NET application as long as the
parameters are all primitive types). This work was done in
Visual Studio 2003 by using the automated tools of the
environment.

For the speed measurement, clients read 540 PVs as
doubles as a group ten times consecutively. This test was
repeated 20 times to get an average speed. Table 1 shows
the result.

 Win32 .NET
 SCAcom 20.8 msec 21.8 msec

dummy server.

This measurement was done Windows 2000 running on a
PC with 2.4 GHz Pentium 4 dual CPUs. The result shows
that runtime performances of both applications are
essentially identical.

SCAnet
SCA has been in development for many years and

while this development effort has paid off in performance,
it has also resulted in some code bloat. We decided that
with C#, we could create a .NET class that could be a
very thin layer over CA and still support the familiar SCA
interface. With this new class we call SCAnet, we hoped
to achieve reductions in the size of our SCA code base by
using the higher level language features of C#. We also
wanted to enhance .NET compatibility by deploying a
native .NET class rather than an imported Active X
control. Finally, we hoped to make improvements in data
access by looking at different strategies for calling CA.
On the other hand, we also realized that by calling into the
CA DLL directly, instead of through the SCA DLL, there
would be potentially some loss in performance due to the
more frequent calls from managed to unmanaged code.

SCAnet uses two C# modules. The first module, CA.cs
is a very thin layer between the unmanaged code of ca.dll
and .NET. The second module, Sca.cs, implements the
SCA interface.

Although there are no fundamental problems
developing a layer between managed and unmanaged
code, it is still a tedious exercise. C# is able to call into
DLL’s but special care must be taken to deal with pointer
arguments. In dealing with these pointers it is crucial to
understand to which areas in memory these pointers refer
and use the appropriate .NET system calls to either
marshal values across the managed/unmanaged boundary
or to directly dereference the pointer using the ‘unsafe’
keyword.

We tested the performance of the same application
getting 540 PVs as doubles using SCAnet. The result
shown in Table 2 indicates about a 50% increase in access
time. However, it should be noted that this result includes
the effect of the server running on the same machine
although the PC has two processors.

Table 1: Time to read 540 double items from the local

2005, Hayama, JapanProceedings of PCaPAC

 Win32 .NET
 SCAnet N.A. 32.3 msec

PERFORMANCE OVER THE NETWORK
Finally, we make a real access to the control system. In

this configuration, the CA servers are now multiple IOCs
with embedded processors running the VxWorks OS. On
the 2.4 GHz PC we read 540 of analog values from the
IOCs controlling the magnets (Table 3). The performance
on the .NET is 25% slower with SCAcom but the same
with SCAnet.

 Win32 .NET
 SCAcom 16.4 msec 19.8 msec
 SCAnet N.A. 16.6 msec

control system on the 2.4 GHz PC.

We have also measured the performance on a 500 MHz
PC used as a operators console. This case, as shown in
table 4, SCAcom shows the same performance on both of
the platforms. On the other hand, SCAnet works 3.5 times
faster than SCAcom.

 Win32 .NET
 SCAcom 74.4 msec 76.6 msec
 SCAnet N.A. 20.4 msec

control system on the 500 MHz PC.

CONCLUSION
SCAcom has shown a good compatibility on .NET

therefore ideal for the early transition period. A newly
developed .NET component SCAnet demonstrated even
better performance on .NET than SCA on Win32 in the
real environment. These two components will allow
smooth transitions of the control room application
programs to the .NET platform.

AKNOWLEDGEMENTS
We thank D. Robin and A. Biocca at LBNL for their

encouragements. We also thank C. Ikami for system
management and Loren Shalz for SCA development.

REFERENCES (NOT COMPLETED)
[1] LBL PUB-5172 Rev. LBL,1986.
 A. Jackson, IEEE PAC93, 93CH3279-7(1993)1432
[2] L. R. Dalesio, et al., ICALEPCS '93, Berlin,

Germany, 1993.
http://www.aps.anl.gov/epics/

[3] S. Magyary et al, NIM A 293, p36, 1990.

S. Magyary, IEEE PAC’93, 93CH3279-7, p1811,
1993.

[4] G. Portmann, this conference.
 J. Corbett, A. Terebilo, G. Portmann, IEEE PAC’03,

0-7803-7739-9, p2369, 2003
G. Portmann, J. Corbett, A. Terebilo, "An
Accelerator Control Middle Layer Using Matlab
Manual," to be published in IEEE PAC’05

[5] http://www-controls.als.lbl.gov/epics_collaboration/
sca/

4376-X/98, p805, 1998
http://www-controls.als.lbl.gov/epics_collaboration/
sca/win32

dummy server.
Table 2: Time to read 540 double items from the local

Table 4: Time to read 540 double items from the real

Table 3: Time to read 540 double items from the real

[6] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803-

[7] C. Timossi, unpublished.

2005, Hayama, JapanProceedings of PCaPAC

