
BEATING COMMERCIAL PRODUCTS: CONTROL SYSTEM OFFICE AND
INTEGRATED DEVELOPMENT ENVIRONMENT ARE THE WAY TO GO

G. Tkačik, Cosylab, Ljubljana, Slovenia

Abstract
The success of office suites is based on the three

fundamentals: consistent look and feel across applications,
a common set of data manipulations (navigation,
clipboards, undo/redo, copy and paste, find and replace
etc) and the ability of different applications to process the
same data (a table can be a part of a document in a word
processor and a spreadsheet). This article discusses the
same fundamentals in the context of control system
software and shows that the “office paradigm” is relevant
to it.

To support office-like functions, data beyond raw
measured quantities is required: we call this data meta-
data, and it encompasses – for example – machine-
readable information about how different channels are
logically organized into parallel hierarchies, how single
values can be combined into group displays and how data
items are interpreted differently according to the user
interface context. We enumerate meta-data, describe how
it is uniformly managed behind the scenes by Abeans,
and how it enables generic applications such as table
application, chart, archive or even IDE, to interoperate
seamlessly as parts of an integrated suite.

INTRODUCTION
The purpose of this paper is to propose one possible

architecture that realizes the Three fundamentals of an
office suite: consistency of user experience, shared
actions over data and uniform interpretation of data. The
proposal is placed into the context of existing EPICS
protocol for reliable and efficient data exchange [1], and
Abeans for meta-data representation and management [2].
Steps in the direction towards integrating the two have
already been made [3], along with the exploration of
meta-data concepts in general [4]. Another contribution
[5], presented at PCaPAC 2005, provides a follow-up on
this work, detailing in particular how new Java
technologies help in realizing design ideas presented here.

LESSONS LEARNED SO FAR
While we will not address the business case question of

cost vs. benefit of a control office suite (COS), we
nevertheless examine the issues related to Abeans and the
Java platform to see how they support the COS idea.
Although there have been successes with integration of
Abeans and various other control systems [6], there are
two major drawbacks in the current third release, namely:
• Sheer size and complexity of the code. Abeans have

traditionally covered application framework and
services in addition to data exchange; furthermore,
for control system market, the design is probably
over-generic. As a consequence, the desired

functionality is either difficult to master (if it exists)
or it is non-trivial to add for someone who is not
familiar with the intricacies of the code.

• Deployment is difficult. The code is not modularly
packed; the development of each application is still a
compiled-code development and not script-driven /
interpreted.

The reasons for these shortcomings are twofold. Firstly,
the development of Java-related technologies has made
much of Abeans redundant. Secondly, during the last
years, scenarios for Abeans use considered by Cosylab
have matured to the point where we can say what CS
libraries can assume about underlying systems, and what
has to remain flexible.

Evolution of Java platform and Abeans
Even if we postpone the discussion of Java 1.5 features,

recent years have seen numerous developments relevant
to office suite. An increasing number of application
services are now provided by Java platform: logging is a
standard package in java.util.logging, application name-
value preferences (on system and user basis) are provided
in java.util.prefs, exception chaining is defined through
initCause() method of Exception class*. There are still
areas where Abeans provide superior functionality, such
as in resource loading (resource location makes
transparent switching between local file system, remote
URI, and other modes of storage easy) and property
handling (Java System properties are complemented with
command-line overrides, file configuration and so on) [6].

More importantly, a fair fraction of Abeans code (about
a third) implements the framework, a system of child-
parent relations coupled to lifecycle management,
including the means of modifying and transversing it, and
componentizing its parts. A number of similar schemes
has emerged either as part of Java (JMX most recently),
Web technologies (Jboss / Tomcat) or IDEs (Eclipse
platform)†. Even though Cosylab can maintain the full
framework codebase, the effort might be better spent on
focusing on our specialty knowledge, i.e. control system
data flow.

Finally, there has been a profound shift in how people
view dynamic capabilities of Java, such as introspection
and reflection‡. In Java 1.2 reference literature one can
still read warnings on how to “use introspection sparingly,
and only when there is no other way”, citing the lack of
type-safety at compile time as the reason for being

*
 Currently, the exception handling mechanism of Java is still much

poorer than Abeans exception services, but the direction of development
of Java platform is clear.
†
 We have examined Eclipse, Tomcat and JMX for use in the future.

‡
 After Java 1.2, features such as Dynamic Proxy and privileged access

have considerably extended the reach of reflective programming.

2005, Hayama, JapanProceedings of PCaPAC

cautious. Today, dynamic capabilities are widely used,
most productively in scenarios where XML files are
employed to define the structure of an application by
enumerating modules and components that are then
dynamically instantiated and installed by the framework.
XML is thus used as a medium that makes loose biding
and deployment of components possible, and through its
schemes provides some replacement for tight type-
checked coupling of a compiled code§.

Data-flows and Abeans
By itself the conclusions of previous section are not

striking and do not make up a COS: after all, an office is
not a set of unrelated components living in a container.
What is specific to a COS is the knowledge of how to
describe, display and manage the data flow between the
user and the controlled objects. To this end Abeans have
promoted “URI name – Directory Descriptor – Request /
Response” triad as a basic element of interaction with the
control system:

1. Each data source can be a target for a request
submitted to the underlying layer, capable of
producing a response;

2. Request is targeted with a unique name,
expressible in a standardized hierarchical form
(URI);

3. An entity independent of the target, namely
directory, can provide descriptors (also addressable
by URI) for each target, containing information on
what input data a request must contain and what
kind of output the response can deliver.

In Abeans 3, these concepts are reflected in the code by
interfaces in packages abeans.models, abeans.engine and
abeans.models.meta.

Currently, all elements of the triad live within the same
JVM. However, by using a framework technology that
allows distributed objects, such as JMX mentioned in the
previous section, the elements can become decoupled**;
most notably, the directory with its descriptors can run in
one location, independently of the actual Abeans engine.
This reduces the overhead of instantiating and populating
the directory, which can in addition store also
(semi)persistent state about the objects (their availability,
status and dependencies).

Soon, however, we realized that the directory can
accommodate much more than solely data related to each
target alone. For example, while the hierarchical names
describe one possible object hierarchy, such as
ANKA/Booster/PowerSupply1, we can imagine the same
PowerSupply1 being a member of PowerSupplies group
parent; or alternatively, being part of a group

§
 For example, consider XML deployment descriptors of Tomcat WAR-

packed applications.
**

 Note that in architectures such as JMX it is actually indistinguishable
to the user whether the directory runs on the same or different machine,
and the choice could be affected through configuration without code
modification. Even if the architecture does not allow for this, Abeans
API itself can be designed always to give the user the feeling of co-
location of the engine and directory.

CompanyAPSs, which are distinct from CompanyBPSs
(and possibly controllable in a different way). To
generalize, there might either be alternative hierarchies
(in the strict sense of each object having exactly one
parent), or alternative groupings (each object being
tagged by arbitrary number of identifiers). Furthermore,
how does one store the information that PowerSupply1
and VirtualDevice1 are actually the same underlying
device? Or that PowerSupply1 is entity of type
PowerSupply and that all PowerSupplies have the same
structure?

The answer is to store not only entity descriptors, but
also relationship descriptors into the directory. We
believe that if we attempt to make a control office suite,
the relationship directory will turn out to be its
cornerstone.

ABEANS DIRECTORY FOR OFFICE
SUITE

Data-source entries
Currently, the nodes in the directory are organized in

the following way:
abeans-EPICS
 domain1
 <device1, …>
 domain2
 <device2, device3, …>
abeans-types
 type1
 <type1-composition>
 type2
 <type2-composition>
abeans-relationships
 aliases
 device3 – isAliasOf – device2
 isInstanceOf
 device1 – isOfType – device1
 …

For each pluggable subsystem, there is a node abeans-

<plugname> in the tree, which contains the basic,
primary hierarchy that maps to URI names. For example,
abeans-EPICS://domain1/device1/channel1 would refer
to a descriptor of channel1 stored 3 levels deep under
abeans-EPICS node. A direct mapping of primary tree to
URI names makes it possible to look up or list all physical
data sources in the system in constant time.

If the system supports the distinction between a type
and an instance, then all instances listed under primary
hierarchy abeans-EPICS that are of the same type (such
as a PowerSupply) share the same descriptor object that is
listed in abeans-types://PowerSupply. While each single
lookup for any instance of power supply in abeans-EPICS
will still return a descriptor, the directory now contains
additional knowledge for applications that are aware of
the notion of a “type” (for instance, the device table
application), returning the type info and enabling queries
against all instances matching a given type.

2005, Hayama, JapanProceedings of PCaPAC

Finally, relationships entry contains (binary)
relationship instances, organized by the relationship type
(such as aliases, isInstanceOf, isMemberOf, etc). A large
number of functions, previously handled separately or not
provided, can now be uniformly approached with this
mechanism. For example, it is now possible to query all
objects of type PowerSupply, all objects that access the
same underlying channel; furthermore, it is possible to
declare completely new tree nodes, such as abeans-
virtual://VirtualGroup1 and, through isMemberOf
relationship, declare that devices device1, device2,
device3 belong to this group.

When a relationship is implemented in Abeans libraries,
there is a piece of code that tells the framework how to
process the actual relationship. For instance, if device2
aliases device1 which is of type PowerSupply, it makes
sense to treat device2 as if it were also a PowerSupply.
Note that for the user, programmatically, the information
is accessible through a uniform Java JNDI interface,
which is part of the platform.

Data-sink entries
The relatively small investment in the directory

implementation (compared to the development of the
application framework) gave us great flexibility and
transparency in information organization. Although it is
tightly coupled to other Abeans R3 classes in the current
version, we believe that there is no inherent problem in
creating a stand-alone directory component. However, the
existing incarnation only describes data sources and their
organization, while office is concerned with data sinks, i.e.
ways of presenting and manipulating data once it has been
acquired from the source.

Data-sinks are conceptually adapters to components
that perform display, printing, formatted output (saving,
archiving) or data transformations. It is relatively trivial to
design a one-to-one source-sink mapping, in which e.g. a
gauge GUI component will display the current in a power
supply; mapping many sources-to-one sink requires more
thought. In addition, it necessitates some parameterization
of the content of a data item being transferred: for
example, a data-source descriptor may state that abeans-
TINE://Server1/source1 returns an array of doubles, but
there is no information that explains whether this array is
a profile (such as a power supply current readout over 100
power supplies), a waveform (current values that depend
on time), or simply current values indexed by a certain
known or arbitrary index.

Currently, there is no implementation whatsoever of
data-sink entries, although we are working on their design.
We think that the field of control systems is constrained
to such a degree that the number of types of content being
transferred is relatively limited: there are single-values
with all their access modes (get, set, monitor in
synchronous and asynchronous versions and with
different monitor triggers), tuples of values (usually
treating pairs separately might still be relevant, but not
higher-order tuples, except in specialized cases where
whole structures are transferred, in which case this can be

viewed as a compound data source or a map of key-value
pairs), and arrays of values (where the indexing axis is
either time, device ID; or alternatively the result is a
tabulated function). In the following sections we will
show how data-source, data-sink and relationship
descriptors tie together office components.

OFFICE COMPONENTS
One of the successes of CosyBeans visualization

libraries was the distinction between the visual container
(such as a CosyPanel) and a plug-in (logging, exception,
navigator plug-in windows etc). Just as a directory serves
to organize information flow, the visualization of a COS
should be based on an installable GUI framework (either
Cosy Beans or 3rd party, such as Eclipse). Graphical
components then become plug-ins in the visual hierarchy,
but also data sink entries in the directory. In addition,
operations on the data get encapsulated into Actions, for
which Java already defines interfaces in Swing libraries:
ExportToTextFile action, for instance, could take a data
source and pop up a window asking the user for times or
triggers when the value of data source should be exported,
after which the action is enqueued and starts executing.
ExportToTextFile is registered as a data-sink in the
directory, and can be listed in the pop-up menu when the
user right-clicks on the data-source entry in the navigator
tree display of the devices††.

Although the scenario seems contrived and over-
simplified, note that there is nothing specific to saving a
selected data source to a file: what is important is the fact
that the action (the sink) understands the data format that
is being produced by the source, and that in order to make
this determination enough data is stored in the directory
(in a machine parseable format) so that the actual source
and sink are not instantiated before the compatibility is
established. In the same way one could imagine selecting
nodes in the tree and displaying them in a chart by
selecting “View data in chart” from the pop-up menu.
Note that visual application construction from actions and
components is not something that Cosylab is promoting
as our original idea, but is rather a disciplined exercise in
well-known GUI design patterns that should be
undertaken regardless of whether a suite is being
developed or not.

PUTTING PIECES OF THE PUZZLE
TOGETHER

A company of our size could not undertake the effort of
implementing COS if the platform itself did not progress
through the years. Today, however, this task is doable. If,
for example, JMX is adopted as framework platform, one
can imagine the following sequence of steps leading the
control office suite:

††

 Note that such action would not appear for navigator entries that are
not data sources, for instance hierarchical domain names in our example
of abeans-EPICS://domain1. Context sensitivity is possible because
sinks declare in their descriptor what kinds of targets they can consume.

2005, Hayama, JapanProceedings of PCaPAC

1. Define data-source and data-sink metadata (i.e. what
kind of entries the directory contains), and implement
the directory as a JNDI accessible JMX component.
At this point any client running JMX could query the
directory. In particular, there can be clients that
actually fill the directory, either by querying XML
input files, CORBA Interface Repository or some
other source. We have implemented data-source part
in R3 and have drafted preliminary designs for data-
sinks. We have experience with JMX.

2. Make a JMX entity that encapsulates current Abeans
engine. This entity processes Abeans Request objects
and turns them into EPICS PV read/write operations,
for example. Our new analyses show that the engine
and plug of Abeans Release 3 can be fused into a
single mechanism‡‡. In addition, in advancing past
Java 1.2, the performance aspects of coding have
changed considerably, with small object instantiation
optimized but threading and GUI still consuming a
lot of CPU. In effect, Channel Access for Java could
process directly the “generalized request and
response” form, making bridge from Abeans to
EPICS much thinner. Most of these components are
operational but would have to be refactored.

3. Adopt or make a GUI skeleton framework,
supporting installable plug-in. CosyBeans already
exist, but would need to be refactored. Other
platforms can be considered.

4. Create GUI components and actions for the office.
Some underlying graphical components are already
in use (charts, navigator, gauges, tables), but would
have to be refactored to use the data-sink
specifications.

5. Define the deployment, installation, negotiation and
configuration protocols for the sources and sinks.

The last point requires further work, but also offers a
great promise that could address the second big Abeans
R3 drawback (difficult deployment) and reap new Java
technologies. Imagine distributing the office runtime (new
Abeans core) only as the basic set of JMX components
(engine that talks to the underlying system, directory
access, GUI skeleton, bootstrap components) and JVM
runtime (with new application services that it provides)§§.
The GUI skeleton wakes up and contacts the directory,
which now contains also a list of applications themselves.
When an application is selected, its graphical components
get downloaded directly from directory if they are not
already present on the client machine (trivially achievable
with Java byte-code). The GUI components install
themselves into the skeleton (a series of plug-in, action
and control screen instantiations), and as they integrate
themselves into AWT hierarchy, they register in parallel
as data-sinks. The final part of the application
specification in the directory is a binding scheme of data-

‡‡

 Because of the restricted scope of cases where we wish to deploy
Abeans.
§§

 The JAR size would decrease by a large margin, because the complete
JMX framework is part of the core Java platform as of Java 1.5.

sources to data-sinks, both of which have descriptors in
the directory themselves making it conceivable that there
is an algorithm that instantiates the sources and starts
feeding data into the sinks. Because applications of this
design consist of an enumeration of data-sinks and the
bindings to the data-sources, they as well can be stored in
the directory as descriptors, which completes the scheme.

CONCLUSIONS
Although by no means simple, I believe that the effort

to implement such an architecture is smaller than that of
creating Abeans Release 3. It is hard to stress enough how
the Java platform has changed and the fact that this (and
the focus that office use-case would give to Abeans)
makes it possible to reduce the codebase of current
release by at least a factor of 2 if not more. Migration to
an industry-standard platform such as JMX and
deployment akin to Tomcat or Jboss also makes entry for
new developers much easier, because there is no longer a
monolithic block of code to master, but rather a loosely
(but precisely) tied selection of independently installable
components. All patterns and supporting classes with
generality wider than that of Abeans can be factored into
separate APIs, either because they could be usable for
other Cosylab projects, or to be replaced by open-source
equivalents (such as Apache Commons), where
appropriate.

Furthermore, the strategy outlined here allows for
incremental progress towards a full-fledged suite, where
the only problem to be solved in one go is the
specification of descriptors and negotiation, while the
implementation can proceed in small pieces and
independently. Some existing specifications, such as the
[7] or the Infobus / JAF can serve as design guidelines.

Cosylab has the accumulated experience of having
implemented various projects on a wide range of control
system architectures, experience of trying to introduce
meta-data to facilitate generality and maintenance, as well
as the benefit of having tracked carefully new
technological developments of the Java platform. In my
rough estimation a man-year of work investment should
result in a working prototype of the control system office.

REFERENCES
[1] http://caj.cosylab.ocm
[2] M. Pleško et al, “Where and What Exactly is “Knowledge”

in Control Systems”, ICALEPCS 2003, Gyeongju, Korea,
October 2003

[3] A. Košmrlj, “New Features for New Applications with
Abeans 3.1”, PCaPAC 2005, Sokendai, Japan, March 2005

[4] G. Tkačik et al, “A Reflection on Introspection”,
ICALEPCS 2003, Gyeongju, Korea, October 2003

[5] G. Tkačik, “Generic Types in Java: Abeans<T>
Specifically for You, Mr T?”, PCaPAC 2005, Sokendai,
Japan, March 2005

[6] I. Verstovšek et al, “Abeans: Application Development
Framework for Java”, ICALEPCS 2003, Gyeonju, Korea,
October 2003

[7] XML Datatypes http://www.w3.org/TR/xmlschema-2/

2005, Hayama, JapanProceedings of PCaPAC

