
EPICS IN THE PXI SYSTEM

Kukhee Kim*, Charles J. Ju, M. K. Kim, M. C. Kyum, and M. Kwon,
KBSI, Yusung-gu, Daejeon 305-806, Korea

Abstract

The KSTAR (Korea Superconducting Tokamak
Advanced Research) project [1, 2], which aims to
construct a superconducting tokamak, was launched in
1996. Much progress in instrumentation and control has
been made since then. Commercial products for system
controllers and physics diagnostics such as the PCI
eXtensions for Instrumentation (PXI) based on the
LabView systems have been considered. The commercial
solution has some limitations in performance and offers
poor support for a large number of I/O implementations.
To overcome these limitations, Experimental Physics and
Industrial Control System (EPICS) [3] software will be
used for KSTAR control. Now, we must consider the
preservation of the pre-investment PXI hardware and how
to integrate it into some of the local control systems
which are still being developed by based on the LabView,
hence the integration of National Instrument's PXI and
EPICS is necessary. We successfully constructed a
prototype vacuum controller by integrating EPICS in
National Instruments products.

INTRODUCTION
We are considering two types of integration; close

integration and loose integration. For close integration,
we can use EPICS software instead of LabView for the
PXI system. We can use DAQmxBase[4]/DAQmx, which
are libraries provided by National Instruments (NI), to
build EPICS device/driver supports. EPICS works in its
own device layer which was built with National
Instrument's Application Program Interface (API). For
loose integration, we can use shared memory to access
LabView data from EPICS Input Output Controller (IOC),
which is located on the same CPU. It is also possible to
implement user defined protocol on the TCP/IP
application layer to communicate with the RTLabView
System. In particular, we developed a simple protocol for
the NI compact field point which operates on the
RTLabView and successfully controlled this device under
EPICS. We describe the details of our implementation
here.

CLOSE INTEGRATION
We are considering the using of the PXI based Data

Acquisition (DAQ) System for the superconducting
magnets and structure monitoring systems. The
parameters to monitor are temperatures, voltages in the
magnet system, and stress and strain in the structures.
Some signals need special signal conditioning and also

need to be compensated for the nonlinear response of
sensors. Commercial adaptive signal conditioning
modules are available for the PXI system. Such modules
have fast bus speed, enough computational power to
handle heavy loads from large number of I/O points, are
able to compute compensation for nonlinearity, and have
thus reduced development efforts. However, until recently,
the PXI system has been supported only by LabView
software provided by NI. In order to use EPICS instead of
LabView, we have to develop a software layer to support
communication between EPICS and PXI hardware. It is
also necessary to build device support which is an
intermediate layer between the driver support [5] and
record support [6]. The device support [7] contains details
of each individual record type in EPICS. Hence, we
started to develop those driver support and device support
named genericPXI. The drivers will be used not only for
monitoring system, but also for plasma diagnostics and
control systems. To satisfy this requirement, the
genericPXI has the following structures and features.

Driver/Device support: genericPXI
The drvgenericPXI (driver support) is a software layer

located in the bottom of EPICS and has access to the PXI
hardware through DAQmxBase/DAQmx libraries. These
libraries consist of a set of API's for direct access to the
PXI hardware.

This driver can correspond with many kinds of device
support, such as, analog input (ai), analog output (ao),
binary input (bi), binary output (bo), multibits input
(mbbi), multibits output (mbbo), waveforms, etc – which
are conventional EPICS record types [8]. It has command
line configuration and status monitoring features. Users
can configure PXI hardware by issuing commands on the
IOC shell and also monitor status of driver by command
line functions [9]. It is a useful configuration method in
EPICS, because, in most of the cases, these commands
are called by start-up script when the IOC is booted
automatically. The driver has two kinds of operation
modes. One is the External driven mode and the other is
the Continuous acquisition one.

External driven mode:

The External driven mode corresponds to ao, bo and
mbbo types of device support. The sequence of operations
is as follows: Events are generated by user threads (other
record processes, Channel Access (CA) events, periodic
scanner and dbAccess) and this activates record support,
see Fig. 1. Record support forwards the request to device
support, which in turn puts the request into the queue.
This processing chain (previous paragraph) runs on the
user thread. After putting the request in the queue, the

*Corresponding author. Tel: +82-42-870-1616; fax: +82-42-870-1609.
 E-mail address: kimkh@kbsi.re.kr (K. H. Kim)

2005, Hayama, JapanProceedings of PCaPAC

record processing is temporarily on hold, to be finished
later. The user thread is now free to run other things.

When driver thread detects a non-empty queue, it will
start hardware processing and will be blocked until the
processing is finished. When hardware finishes
processing the request, driver supports will invoke the
callback function in the device support. The callback
function finishes the record processing. If the driver
thread has a heavy load, the callback function in the
device support could request one of three callback threads
(prioritized callback/general purpose callback tasks) [10]
in EPICS to complete the record processing. This decision
should be made by the programmer for the device layer
when the callback function is built. If the record
processing is completed by the driver thread, the structure
of the program becomes simpler. However, this sacrifices
the response of driver thread because the driver thread can
not respond immediately to the next external events. We
can expect faster response if we choose prioritized
callback to complete record processing; however, there is
a small overhead associated with changing running
threads to complete record processing, callback queuing,
monitoring queue, context switching, etc. Overall faster
response still does compensate for small overheads.

As the previous discussion, the record processing is not
completed by just one thread at a given time, there are
more than two threads involved, and also more than two
execution time slots are involved thus we can call
asynchronous processing for the record processing [11].

Continuous acquisition mode:

The Continuous acquisition mode corresponds to ai, bi,
mbbi, and waveform types of device support. There are
two types for the continuous acquisition mechanism:
driver thread running on infinite loop (acquisition loop) at
prescribed rate, and swing buffer mechanism on the

Direct Memory Access (DMA) buffer, see Fig. 2. For
both mechanisms, the execution rate depends on sampling
rate, triggering, and number of data samples.

In the first type, whole processing chains (from driver
layer processing to record layer one) are driven by the
acquisition loop in the driver layer. This loop has two
linked lists (pre-callback and post-callback), each linked
list executes callback in the device layer. The pre-callback
linked list stores a list of callback functions to execute
before starting the hardware acquisition. The post-
callback linked stores a list of callback functions to
execute it after the acquisition ends. If there is nothing to
do before acquisition, the pre-callback linked list is empty.
However, if there is some pre-processing to be done, the
device programmer can use the pre-callback feature to
implement any preprocessing function needed in the
device support. The post-callback executes post-
processing actions in the device support, and the device
support invokes record processing. If the post-processing
makes record processing directly, the entire record
processing is running on the driver thread. It is not
advisable to have a fast execution rate for the acquisition
loop. While the driver thread executes record processing,
the DMA buffer can overflow if the hardware has a fast
acquisition rate. To prevent overflow, prioritized callback
for post processing can be used. The post-processing
inserts a function pointer to invoke record processing into
a prioritized callback queue, so that the driver thread can
run again on the acquisition loop. Using prioritized
callback results in better performance in the acquisition
loops. However, there can be an unpredictable short delay
in record processing because the prioritized callback may
be processing something else.

In the second type, the record processing could be
triggered by events originating from the user thread. In
this case, the record processing is synchronous. As shown

Us e r Thread Drive r Thread
(drvgene ricPXI)

Prioritized
Ca llback Threads

In EPICS

Reco rd Supports
Events

Device Supports
devgene ric PXI

queue

queue

(ao, bo, mbbo)

Drive r Suppo ts
drvgene ricPXI

Ca llbac k
func tion

Sleep Finis h

D
rivin

g
 P

ro
c

e
ss F

lo
w

P
o

stp
o

n
e

d
 P

ro
c

essin
g

 F
lo

w

Ha rdware Proces s ing

Us e r Thread Drive r Thread
(drvgene ricPXI)

Prioritized
Ca llback Threads

In EPICS

Reco rd Supports
EventsEvents

Device Supports
devgene ric PXI

queuequeuequeue

queuequeuequeue

(ao, bo, mbbo)

Drive r Suppo ts
drvgene ricPXI

Ca llbac k
func tion

Sleep Finis h

D
rivin

g
 P

ro
c

e
ss F

lo
w

P
o

stp
o

n
e

d
 P

ro
c

essin
g

 F
lo

w

Ha rdware Proces s ing

Figure 1: External driven mode.

2005, Hayama, JapanProceedings of PCaPAC

by the dashed arrow in Fig. 2, record support immediately
reads out the acquired data from a buffer in device layer
and completes the record processing. The acquired data
could come from the previous step in the acquisition loop.

Multiple device layer considerations:

The devgenericPXI is designed for conventional EPICS
record supports which have been developed to correspond
to generic machine control and monitoring. However, the
genericPXI needs additional capabilities (e.g., streaming
and archiving features) because it will be used for
continuous data acquisition systems for many of the
KSTAR diagnostics systems. It has to handle heavy data
transfer to the archiving system without data loss during
the acquisition. To achieve this requirement, the
drvgenericPXI can work with a special device support
(i.e., streaming device support) or can also work with
both of them (a special device supports and
devgenericPXI). We have included some features in
drvgenericPXI to handle multiple device supports. One of
the features is pre- and post-callback linked lists. There
are no limitations to register callback functions which are
located in individual device supports. The only limitation
is the execution time of the linked lists. We have to
reduce the callback execution time as in the previous
discussion. The other feature is re-entrancy and thread
safety for APIs in drvgenericPXI. Individual device
supports which are related with drvgenericPXI can make
connection with both of the features.

Portability of the genericPXI
The devgenericPXI doesn't have any knowledge about

the PXI hardware and its library, but drvgenericPXI does.
However, the driver does not have direct control of PXI
hardware. Direct access to PXI hardware is done through
the DAQmxBase library, provided by National

Instruments. Actually this will be replaced by DAQmx.
NI started support for the DAQmxBase in the Linux
environment, but this seems to be a small pilot project,
supporting only two kinds of NI hardware, the E series
and M series. Therefore, NI wants to move to DAQmx
because this software is their base software chassis,
supports almost all NI hardware and is platform
independent [12]. If they move to DAQmx, little or no
change needs to be made to drvgenericPXI. Since the
DAQmxBase library has almost the same structure as
DAQmx, genericPXI can support most NI hardware.

LOOSE INTEGRATION
In the previous section we have discussed EPICS

implementation to access PXI hardware instead of using
LabView software. In addition, we need to implement
run-time data exchange between EPICS and LabView.
Some of the KSTAR local control system will be built
with LabView because it will be developed by other
institutes with their own hardware and devices. Other
institutes prefer to implement systems using LabView
because of lack of experience with EPICS and moreover
there is no software engineer available. In this case, we
can use two kinds of integration methods; one is a simple
channel access (SCA) library [13] which is a Dynamic
Link Library (DLL) type shared library in the MS
Windows system. LabView can access EPICS process
variables (PV's) with this library. The other one is using
shared memory in EPICS soft IOC which is running on
same CPU with LabView. Thus, the soft IOC can access
control variables in LabView through shared memory
[14]. We already have used SCA to make some of our
operator interface (OPI). However, we will minimize the
use of those two methods because we aim to make the
KSTAR control system as a unified as possible under the
EPICS framework.

Driver Thre a d
(d rvgene ric PXI)

Prioritize d
Callb ac k Threa ds

In EPICS

Ha rdwa re Proc es s ing

Ac quis ition Lo op

d rvge neric PXI

Pre - ca llba ck
Linked Lis t

Pos t- c a llbac k
Linked Lis t

d evge neric PXI

que ue

Re c ord sup ports

Us e r Thre a d

Pre - proc e s s ing Pos t- pro c e s s ing

DMA buffe r

Re c ord Proc e s s ing
Sync hro nous
Pro c e s s ing

Eve nts

Driver Thre a d
(d rvgene ric PXI)

Prioritize d
Callb ac k Threa ds

In EPICS

Ha rdwa re Proc es s ing

Ac quis ition Lo op

d rvge neric PXI

Pre - ca llba ck
Linked Lis t

Pos t- c a llbac k
Linked Lis t

d evge neric PXI

que ueque ueque ue

Re c ord sup ports

Us e r Thre a d

Pre - proc e s s ing Pos t- pro c e s s ing

DMA buffe rDMA buffe r

Re c ord Proc e s s ing
Sync hro nous
Pro c e s s ing

Eve ntsEve nts

Figure 2: Continuous acquisition mode.

2005, Hayama, JapanProceedings of PCaPAC

We now discuss about other aspects of KSTAR control.
Many of KSTAR local control systems, such as the
vacuum and cryostat controllers, need robust and cheap
I/O modules that are not necessarily fast. There is no need
for either fast response or heavy computational capability
similar to the VME system. The requirements specify the
use of remote I/O modules. The EPICS softIOC and NI's
CompactFieldPoint (cFP) solution satisfied the design
requirements. The cFP has a small CPU module for the
RT-LabView program on PharLab RTOS [15] and also
has a variety of I/O modules – ai, ao, di, and do. We have
developed a small protocol based on TCP/IP to enable
communication between EPICS and cFP. One half of the
protocol was developed on RT-LabView to execute on
cFP CPU module. The other half of the protocol was
developed in EPICS, namely, drvcFP20x0 and
devcFP20x0. This protocol has a self configurable
feature. When the communication is established, the cFP
notifies EPICS about their hardware configuration
(module types, order of modules, number of channels for
each module, etc), then EPICS decides how to parse the
message from cFP and how to address individual
channels in the cFP I/O modules. We have implemented
cFP and the above protocol with linux based softIOC for
our vacuum system prototype. We can control and
monitor all of our vacuum valves and pumps with this
protocol.

We hope that the cFP remote I/O solution with the
communication protocol can replace some of planned
Programmable Logic Controller (PLC) hardware. At first,
we have considered PLCs and their remote I/O modules
for slow control systems. We now can use soft IOC with
State Notation Language (SNL) programs instead of PLC
CPU modules and ladder programs. In addition, we plan
to use the cFP remote I/O solutions instead of PLC I/O
modules. The SNL program is a native feature of EPICS,
it has a powerful state programming language, deep
coupling with EPICS, simplified development, easier
maintenance, and relieves the need for a PLC engineer.
Moreover, the cFP remote I/O is cheaper than PLC
modules.

CONCLUSIONS
We have discussed EPICS PXI support which is

device/driver software running on NI’s DAQmxBase
abstraction layer. It will support almost all NI hardware
on PXI/PCI bus without any modification after NI
releases their DAQmx library instead of DAQmxBase.
The device/driver now has a boot configuration feature,
configured by IOC shell command and start-up script.
However, we plan to upgrade it for run-time configuration
in the near future. Then, we can configure the hardware
configuration on the fly through the EPICS records which
are related to the run-time configuration feature.

We also discussed NI cFP remote I/O solution with our
communication protocol. This was successfully
implemented in the vacuum prototype controller. We

hope it can replace PLC hardware in the KSTAR control
system. We can use EPICS soft IOC with the SNL
program instead of the PLC CPU module and ladder
program. Thus, the development is simplified and
maintenance becomes easier.

ACKNOWLEDGEMENTS
This work is supported by the Korean Ministry of

Science and Technology (MOST). Thanks to Dr. Ajit
Gokhale at NI for his explanation about DAQmx,
DAQmxBase and the roadmap of the products.

REFERENCES

[1] G. S. Lee, J. Kim, S. M. Hwang, et al., “The KSTAR
Project: Advanced Steady-state Super-conducting
Tokamak Experiments” 17th IAEA Fusion Energy
Conference, Yokohama, Japan, Oct. 19-24, 1998, and
“The design of the KSTAR Tokamak Engineering”
Fusion Engineering and Design, Vol. 46 Issues 2-4
405 (1999).

[2] M. Kwon, J. S. Bak, G. S. Lee, “Progress of the
KSTAR Tokamak Engineering,” Fusion Science and
Technology 42, 167 (2002).

[3] “Experimental Physics and Industrial Control
System”, http://www.aps.anl.gov/epics

[4] “Advanced Data Acquisition Series: Programming
Data Acquisition for Linux with NI-DAQmxBase”,
http://zone.ni.com/devzone/conceptd.nsf/webmain/42
B73A7B82F0FEC786256FB1007227EC

[5] Marty Kraimer, Janet Anderson, Andrew Johnson,
Eric Norum, Jeff Hill, Ralph Lange, “EPICS: IOC
Application Developer’s Guide R3.14.4”, pp 175

[6] Marty Kraimer, et al., ibid. pp 153
[7] Marty Kraimer, ibid. pp 169
[8] Philip Stanley, Janet Anderson, Marty Kraimer,

“Record Reference Manual”
[9] Marty Kraimer, et al., ibid. pp 231
[10] Marty Kraimer, et al., ibid. pp 215
[11] Marty Kraimer, et al., ibid. pp 157
[12] Ajit Gokhale, Private Communication about the

DAQmxBase and DAQmx, ajit.gokhale@ni.com
[13] “Simple Channel Access Library”, http://www-

controls.als.lbl.gov/epics_collaboration/sca/
[14] Dave Thomson and Willem Blokland, “LabView

Shared Memory Interface to EPICS IOC”,
http://www.sns.gov/diagnostics/documents/epics/Lab
VIEW/SNS_LabVIEWEPICS.html

[15] Ajit Gokhale, Private Communication about
RTLabView, cFP and PharLab RTOS

2005, Hayama, JapanProceedings of PCaPAC

