
PORTING EPICS CORE PROGRAM ONTO MICRO-ITRON/SH4-BASED
DEVICE CONTROLLERS

G. Jiang, J. Odagiri, N. Yamamoto, A. Akiyama, K. Furukawa and T. Katoh, High Energy
Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan.

Abstract
Experimental Physics and Industrial Control System

(EPICS) is widely used for many accelerator control
systems. The most important component of EPICS is
iocCore, which is the core software running on
Input/Output Controllers (IOCs). In modern accelerator
control systems, more and more intelligent controllers
with an Ethernet interface, such as PLCs and custom
device controllers, at the interface layer below VME
single-board computers or PCs working as IOCs.
However, in most cases, iocCore can run directly on the
intelligent controllers themselves since they run a real-
time kernel on a high performance CPU and tens of
mega-bytes of memory. Running iocCore directly on the
device controllers can reduce the depth of hierarchy in the
system to make it simpler and more robust. As a first step
towards this scheme, we have ported iocCore onto a target

technical details of the porting are described.

INTRODUCTION
Traditionally, various field-busses (CAMMAC serial

highway, GPIB, Serial, CAN-bus, Profi-bus, MIL1553,
etc.) have been used in accelerator control systems. On
the other hand, modern accelerator control systems use
more and more intelligent device controllers with an
Ethernet interface to replace those field-busses with
Ethernet. Actually, new accelerator projects such as J-
PARC [1] and RIBF [2] are going to adopt intelligent
device controllers listed in Table 1.

In table 1, MCU and e-RT3 are commercial products
available on the market. EMB-LAN100 [3] and N-DIM
[4] are custom controllers. EMB-LAN100 was developed
by KEK for the control of power supplies of DTL Q-
magnets. N-DIM was developed by RIKEN for general
purpose control and monitoring.

Using Ethernet as a kind of field-bus has the following
benefits:

• Continuity – we can expect continuity in the future
because TCP/IP is a widely used standard in
various fields

• Well-established – TCP/IP is a well-established
technology

• Well-known – Ethernet and TCP/IP are popular
and the knowledge of their protocols is widespread

• Flexible – Ethernet can be extended easily and
devices can also be added onto it easily

Table 1: Characteristics of some typical network-based
controllers

Controller Kernel CPU RAM (min)

MCU ITRON SH4 64M

e-RT3 ITRON SH4 32M

EMB-LAN100 ITRON SH3 8M

N-DIM ITRON SH4 6M

EMBEDDED EPICS
The left side of figure 1 shows the EPICS-based control

system. The Operator Interface (OPI) tools communicate
with IOCs through Channel Access (CA) protocol over
the network. If only network-based controllers are used
and connected to the network in this system, expensive
VME computers end up being used just to convert
proprietary protocol of each device to EPICS CA protocol,
leaving all VME slots unused. We can avoid this situation
by running iocCore on each network-based device
controllers. In fact, there have been examples of running
EPICS iocCore directly on processor cards based upon
the PC104 standard, which are running vxWorks or Linux
[8, 9].

This scheme, hereafter referred as Embedded EPICS,

CA IOC

VME or PC

Proprietary
Protocol

OPI

Network-Based
Controller

OPI

IOC Network-Based
Controller (IOC)

CA

running a ITRON real-time kernel on an SH4 CPU. The µ

µ

µ

µ

µ

Figure 1: Structure of exclusive EPICS controller and embedded EPICS controller.

2005, Hayama, JapanProceedings of PCaPAC

has following advantages:
• More distributed –run-time database records are

distributed over the network-based controllers
rather than concentrated on a single IOC

• More robust – since each network-based controller
works as an independent IOC, failure of an IOC
localizes to have smaller impact on the system

• Synchronous driver – complicated asynchronous
drivers are not necessary

In order to achieve the scheme, the device controllers
need to have enough CPU power and memory to run
iocCore.

A decade ago, iocCore used to be running on Motorola
68k based CPUs with a few tens of mega-hertz of clock
frequency. It is clear that CPU power of the controllers
listed in table 1 is enough because an SH4 CPU operates
at hundreds of mega-hertz of clock frequency.

As to capacity of RAM, we need a more detailed
consideration since some of the device controllers have
lower capacity than that of old VME CPU boards.
Typically, binary file size of iocCore (EPICS 3.13) is
around 1 mega-byte or less. The typical size of vxWorks
kernel is also about the same size. The size of record,
device and driver support should be small since the only
ones that are related with the device controller itself are
included. The number of database records is also small for
that reason. Several mega-bytes of memory will be
sufficient to run IOC core program even if we take
additional memory required for communication with CA
clients into account. All of the device controllers listed in
Table 1 meet the requirement.

As shown in the Table 1, ITRON is used for all of
them. ITRON is a real-time, multitasking OS
specification intended for use in industrial embedded
systems, which is registered with the TRON (The Real-
time Operating system Nucleus) Association in Tokyo
University in 1984. It is assuming a position as the
world's first standard kernel specification [5].

IOCCORE ON MICRO-ITRON
In addition to hardware capability, the functional

capability of software platform is another issue to be
taken into consideration.

Basic kernel services
The real-time kernel under iocCore must support

multitasking including synchronization, communication
and mutual exclusion between tasks and so on. Whether if
it has all the functions required to implement Operating
System Dependent (OSD) libraries [6], which interface
iocCore with the kernel, is to be considered. By
investigating the specification, we found that ITRON
kernel meets this requirement.

In addition, ITRON has real-time feature, which
ensures predictable responsiveness to external events for
our purpose [7].

TCP/IP support
Though ITRON has its own specification of

Application Interface (API) of TCP/IP protocol stack,
EPICS requires a BSD compatible socket interface for
network communication. If we use free software for

ITRON kernel and others, we have to port a free
implementation from elsewhere. It is somewhat a costly
work. On the other hand, if we choose to rely on the
commercial software, there are several commercial
products of socket libraries available on the market.

Board Support Package (BSP)
Once iocCore is ported onto a ITRON-based target, it

basically can run on other targets running ITRON. On
the other hand we have to develop a BSP every time when
we support a new target. Development of BSPs is also a
costly and time-consuming task. If we choose free
software, we have to develop BSPs for each of the target
devices on our own. We have to avoid the cost in order to
make Embedded EPICS realistic. To use BSPs as they are
from the suppliers, we decided to rely on one commercial
product for this reason.

IMPLEMENTATION
Selecting the proper development environments of

software and hardware is crucial to make porting
straightforward.

Target hardware
We chose Micro Control Unit (MCU) made by

Nichizou Electronic Control Corporation (NDS) as
hardware platform, since JAERI had successfully ported
CA protocol on ITRON TCP/IP API, with taking CA-
part out of iocCore on MCU.

Target Software

required to run iocCore on the MCU.

µ

µ

µ
µ

µ
µ

µ

µ

µ

Figure 2: Micro Control Unit (MCU) made by Nichizou

Table 2 shows the building blocks of the software

Electronic Control Corporation (NDS) .

2005, Hayama, JapanProceedings of PCaPAC

Table 2: Target software

Component Product Supplier

Kernel NORTi 4.0 MISPO

TCP/IP KASAGO Elmic Systems, Inc.

BSP NDS

Kernel – we chose NORTi since three devices listed in

the table 1, including MCU, are using it.
TCP/IP protocol – we chose KASAGO TCP/IP

protocol stack from Elmic Systems, Inc., and asked them
to port it onto MCU. Two libraries, one is for interfacing
their TCP/IP protocol stack with ITRON/LAN controller
driver, and the other is for interfacing their TCP/IP
protocol stack with NORTi

Development environment
We chose the following products for the build toolchain

and the Inline Circuit Emulator (ICE) for debugging so
that the environment matches with that of used to develop
the BSP of MCU.

• Super Hitach Compiler (SHC, Ver. 8.0.0) with
Hitachi Embedded Workshop (HEW)

• PARTNER-Jet
Recent versions of EPICS base include lots of C++

codes, in which a feature named as Run-time Type
Information (RTTI) was mainly used in exception
handlers. The switch about RTTI in SHC needed to be
turned off to workaround a problem of unresolved
external symbols upon linkage.

SHC is a cross-compiler for embedded system running
on Windows. Though it comes with an abundant C/C++
library, there are some missing functions required to
compile EPICS iocCore.

Implementation of OSD libraries
We have implemented following files of OSD libraries:
• osdThread.c.
• osdMutex.c
• osdEvent.c
• osdMessageQueue.c
• osdInterrupt.c
• etc.
The NORTi native APIs allowed us to implement OSD

libraries just by making wrapper functions around the
APIs, as showed in follows:

epicsMutexLockStatus epicsMutexOsdLock(struct
epicsMutexOSD * id)

{
 ER ercd;
 ercd =loc_mtx ((ID) id);
 if (ercd != E_OK)
 {
 errlogPrintf ("can't lock Mutex \n");
 return epicsMutexLockError;

 }
 return epicsMutexLockOK;
}

Testing BSD socket library
The most essential functionality of iocCore is

maintaining communication channels with clients
concurrently. For that reason, we have tested KASAGO
TCP/IP product with a simple TCP concurrent server
where a server task was waiting for connection requests
from clients. When the server task received a request, it
created a child task that communicated with the client. No
problems were found so far. Overload test must be done
to confirm the stability. Keep-alive function should also
be tested to confirm that a socket is closed on the server
side when the connection with the client is lost.

CONCLUSIONS
We have almost ported EPICS iocCore onto a
ITRON/SH4-based device controller in order to

investigate a possibility of Embedded EPICS. We
implemented OSD libraries, compiled all of the source
codes of iocCore successfully, and tested a commercial
socket library. The results showed that Embedded EPICS
is feasible. In order to confirm the feasibility, we need to
get iocCore running on the target and do more long-term
tests.

REFERENCES
[1] J. Chiba et al., "A Control System of the Joint-Project

Accelerator Complex", ICALEPCS’2003, Gyeongju,
Korea, Oct. 2003.

[2] Y.Yano, et al., “RI Beam Factory Project at RIKEN,”
Proc. of 16th Int. Conf. on Cyclotrons and their
Applications, East Lansing, U.S.A. (2001) p.161.

[3] K. Furukawa, et al., "Network based EPICS Drivers
for PLCs and Measurement Stations", ICALEPCS'99,
Trieste, Italy, 1999, p409.

[4] M.Komiyama, et al., "Current Status of the Control
System for the RIKEN Accelerator Research
Facility", ICALEPCS’2003, Gyeongju, Korea, Oct.
2003.

[5] http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-
e.html.

[6] M. Kraimer et.al, "EPICS: Porting iocCore to
Multiple Operating Systems," ICALEPCS'99,
Trieste,Italy, Oct. 1999.

[7] Real-time Multitasking OS based on ITRON 4.0
NORTi4 User's Guide.

[8] G. Waters, et.al, "TRIUMF/ISAC EPICS IOCs Using
a PC104 Platform", ICALEPCS'2003, Gyeongju,
Korea, Oct. 2003.

[9] M. Komiyama et al., "Control System for the RIKEN
Accelerator Research Facility and RI-Beam Factory",
the 17th International Conference on Cyclotrons and
Their Applications, Tokyo, Oct. 18-22, 2004.

µ

µ

µ

2005, Hayama, JapanProceedings of PCaPAC

