
PERFORMANCE EVALUATION OF EPICS CHANNEL ARCHIVER
VIA PYTHON XMLRPC INTERFACE

A. Toyoda, Y. Sato, H. Noumi, Y. Igarashi, K. Nakayoshi,
Y. Hayato, M. Tanaka, H. Fujii and H. Kodama

KEK, 1-1, Ooho, Tsukuba, Ibaraki, 305-0801 Japan

Abstract
J-PARC (Japan Proton Accelerator Research Complex)

[1] under construction aims to provide the high intensity
proton beam (50 GeV, 15 µA) and extend high intensity
frontiers of particles and nuclear studies. To handle pri-
mary beams of the slow-extraction beam line at J-PARC,
it is required for the control system to display real-time
DC signals from a large number of thermometers, vacuum
gauges and so on. It is also necessary to archive such kind
of data every few seconds to get historical information on
each apparatus. As part of the R&D program to construct
such control system, we have developed a prototype system
to archive data with the EPICS [2] Channel Archiver [3]
and to display them via Python XMLRPC interface. The
performance and evaluation of this system are reported.

CONTROL SYSTEM OF THE J-PARC
SLOW EXTRACTION BEAM LINE

Figure 1 shows a schematic figure of J-PARC slow-
extraction beam line[4]. A proton beam is accelerated to

50 GeV in linac and 2 synchrotrons, and extracted into this
beam line. The extracted beam duration will be about 0.7
seconds and the accelerator cycle will be 3.4 seconds or
so. The proton beam is extracted into HD hall via a switch
yard, and focused on a T1 target as a proton target. Sec-
ondary particles such as kaons, pions, and so on are trans-
ported into a secondary beam line, and the residual primary
proton beam is introduced into 750 kW beam dump.

Figure 2 shows all of our control components. There
are many control components such as a monitoring system
for various status of each apparatus, a control system for
magnets and several kinds of beam monitors, data logging
system, and so on. In this article, we focused on the tem-
perature monitoring system and its data logging system.

Necessary specifications

In our beam line, there are several apparatus located at a
big beam loss point such as the T1 target, the beam dump,
a collimator, and so on. For the safe beam operation, it
is necessary to observe the temperature distribution and its
historical trend for such apparatus. We are planning to set
up more than a thousand of thermocouples for this purpose.
Thus the unit cost to measure 1 thermocouple should be as
low as possible. The other important point is to measure
temperature distribution with the rate of at least 1 scan per
1 beam spill (∼ 3.4 seconds). To satisfy these two con-
ditions, we chose the Agilent [5] data acquisition / switch
unit (34970A) and EPICS system. For data logging sys-
tem, we prepared the EPICS channel archiver. To display
real-time data and historical trend, we used the python with
XMLRPC, EpicsCA [6], and Tk interfaces.

Figure 1: J-PARC slow extraction beam line.

Figure 2: Control components.

2005, Hayama, JapanProceedings of PCaPAC



Framework of our status viewer

Figure 3 shows the framework of our status viewer.
Many K-type thermocouples are connected to the apparatus
such as a beam dump. These thermocouples are measured
by an Agilent multiplexer. This multiplexer is connected
to a LAN-GPIB Ethernet gateway (E5810A) via the GPIB
interface. By this module, An EPICS IOC (Input/Output
Controller) can access data via a local control LAN. The
EPICS channel archiver as a data logger and a GUI display
extract data from an EPICS IOC via an EPICS channel ac-
cess. The GUI display also extracts archived data from the
data logger via a XMLRPC protocol.

EPICS IOC SPECIFICATIONS

First of all, we describe the EPICS IOC in detail. Used
hardware for a thermometer scanner are a data acquisi-
tion unit (Agilent 34970a), three sets of 20 channel mul-
tiplexer modules (Agilent 34901a), and a LAN-GPIB Eth-
ernet gateway (Agilent E5810a). The EPICS IOC is run on
PC/AT compatible (CPU: Pentium IV 2.8 GHz; memory:
500 MB; HDD: 5400 rpm 40 GB ATA). The operating sys-
tem is Linux (debian GNU/Linux sarge; gcc 3.3.4/ kernel
2.6.6-1-686). An EPICS version is R3.14.6, and the data
record type of the EPICS channel is the waveform record.
We used async driver whose version is 4-2 as an EPICS
GPIB interface.

By combining the above components, we achieved the
relatively low cost of 5000 Japanese yen per channel and
the acceptable scanning speed of 22 channels readout per
second which corresponds to 3 seconds per scanning. This
relatively slow scanning speed is mainly dependent on the
slowness of the multiplexer module readout, not on the
EPICS IOC performance, a LAN interface, a GPIB inter-
face, and so on.

DATA LOGGER

Secondly, we explain the EPICS channel archiver as a
data logger. We used the channel archiver of version 2.1.8,

a XMLRPC library of version 0.9.10-4, a Xerces XML li-
brary of 2.4.0-3, and python as a XMLRPC client of ver-
sion 2.3.5.

Performance test of EPICS channel archiver

First of all, we explain the scheme to extract data from
the channel archiver briefly. The XMLRPC client extracts
archived data from the data logger via the XMLRPC proto-
col. The data logger always stored data every second. The
XMLRPC client requests 50 data points within the speci-
fied time window from a starting time to an end time. Ac-
cording to this request, the data logger server averaged the
archived data within each time window cell of 1/50 of the
time window, and send the resulting 50 data points back to
the client side.

 0.01

 0.1

 1

 10

 100

5 months3 months1 month1 week1 day1 hour1 min.0

T
im

e 
co

ns
um

pt
io

n 
(s

ec
.)

Time window (sec.)

End time: now

Figure 4: Time-window dependence of time consumption
to extract all data. The horizontal axis is for the time win-
dow from 1 minute to 5 months. The vertical axis is for
the time consumption in the unit of second to extract all
requested data from the EPICS channel archiver.

Figure 4 shows the time-window dependence of the time
consumption to take all of the requested data from the chan-

Figure 3: Status viewer framework.

2005, Hayama, JapanProceedings of PCaPAC



nel archiver. The conditions of this test are listed as fol-
lows.

• Number of thermocouples connected is 2.

• Data retrieval method of the channel archiver is aver-
aged.

• Number of retrieved data points is 50.

• Data writing rate of the channel archiver is 1 writing
per second.

As shown in this figure, there is a large dependence on
the time window size. For a good response to retrieve data
within 1 second, a time window should be smaller than a
few weeks.

 0.01

 0.1

 1

 10

60 point26 point2 point

T
im

e 
co

ns
um

pt
io

n 
(s

ec
.)

Number of data points

Time window: 1 hour
Time window: 1 day

Time window: 1 week

Figure 5: Dependence of a time consumption on number
of thermocouples connected. A blue line is for the depen-
dence with a time window of 1 week. A green line is for
the dependence with a time window of 1 day. A red line is
for the dependence with a time window of 1 hour.

In the next test, we measured a dependence of a time
consumption on a number of thermocouples connected as
shown in figure 5. In the case of dozens of thermocouples
connected, it takes one order longer time especially for the
relatively large time window of 1 week or so. For good
response such as a time consumption of 1 second, we need

 0.01

 0.1

 1

 10

 100

5 months3 months1 month1 week1 day1 hour1 min.

T
im

e 
co

ns
um

pt
io

n 
(s

ec
.)

Time window

python
perl

Figure 6: XMLRPC client dependence of the time con-
sumption. A green line is for the perl client with perl of
version 5.8.4 and Frontier library of version 0.07b4. A red
line is for the python client whose version is 2.3.5.

to set the time window to be less than a few days or so with
60 thermocouples connected.

Lastly, we tested a XMLRPC client dependence on the
time consumption. As shown in figure 6, almost no depen-
dence on a client side was observed. This result indicates
that the data extraction speed is mainly limited by the chan-
nel archiver server performance in our archiving setting.

EXPERIMENTAL MEASUREMENT

In this section, we described an experimental measure-
ment with our newly-developed data viewer which is pro-
grammed with python.

Figure 7 shows the experimental setup. A copper block
whose size is 1000× 200× 50 millimeters was prepared as
a mockup of a beam dump. To warm up this copper block
uniformly, fifteen heaters were installed from the top side
of the copper block. The heater power was controlled from
5 to 10 kW. To cool the heated copper block, we made a
hole from left to right as shown in the figure, and a run-
ning water line was connected to this hole. The water flow
rate was controlled to be 20 l/m. To measure the tempera-
ture distribution, 56 K-type thermocouples (4 × 14) were

Figure 7: Experimental setup.

2005, Hayama, JapanProceedings of PCaPAC



uniformly put on the surface of the copper block. The ther-
mocouples were also set up at inlet and outlet line of the
running water. One thermocouple was prepared to measure
the room temperature.

For calibration, we also prepared an infrared thermome-
ter. To make sure the emissivity to be constant, a black tape
was put on the copper block.

Figure 8: Experimental sequence. Horizontal axis is for
the clock time, vertical axis is for the temperature in the
arbitrary unit. Solid line is the expected temperature trend.

Figure 8 shows the experimental sequence. At time zero,
we switched on the heater with the power of 5.2 kW. 22
minutes after the heater on, the heater power was doubled
(9.9 kW). 26 minutes after the heater on, we switched off
the heater.

The GUI data viewer extracted real-time data via EPICS
channel access with EpicsCA interface whose version is
1.4.5. A historical trend was extracted from the EPICS
channel archiver via XMLRPC protocol.

Real-time distribution GUI

Figure 9: Real-time distribution GUI. These data are mea-
sured at 13 minutes after the heater on. The top figure is for
a GUI window of our data viewer for the real-time temper-
ature distribution. The bottom figure is for a picture taken
by the infrared thermometer for calibration.

Figure 9 shows the real-time temperature distribution
with our data viewer. The temperature distribution is al-
most the same as each other. The maximum temperature is
also the same as each other. Our data viewer for the real-
time distribution worked well.

Historical Trend GUI

Figure 10 shows our historical trend viewer. When we
clicked on the real-time data viewer described in the pre-
vious subsection, a window of the historical trend viewer
is pop up, and archived data are extracted from the data
logger. We achieved to get the nice historical trend of the
corresponding channel as shown in this figure.

SUMMARY

We developed a status display to monitor a thousand of
thermocouples by combining the Agilent data scanner sys-
tem, the EPICS IOC, and python Tkinter for the J-PARC
slow-extraction beam line. The data acquisition speed of
about 3 seconds per scan is enough, and the channel unit
cost of 5000 Japanese yen is low enough. We achieved
to log and extract data with the EPICS channel archiver.
We analyzed the channel archiver performance, and found
that the time window needed to be less than a few days for
a good response with 60 (full) thermocouples connected.
The data extraction speed is limited by not the client but the
performance of a channel-archiver host computer. We also
experimentally measured the real-time temperature distri-
bution and its historical trend, and confirmed that it worked
well by comparing with data of an infrared thermometer.

REFERENCES

Figure 10: Historical trend GUI.

 
[1] http://j-parc.jp/index.html 
[2] http://www.aps.anl.gov/epics/ 
[3] http://ics-web1.sns.ornl.gov/ kasemir/archiver/ 
[4] K.H. Tanaka et al., ìTec hnical design report II for the 

slowextraction beam facility at the 50-GeV in J-
PARCî, KEK internal report 2004-3 

[5] http://www.agilent.com 
[6] http://cars9.uchicago.edu/ newville/Epics/Python/ 

2005, Hayama, JapanProceedings of PCaPAC


