
AUTOMATIC CONSOLE SCREEN MANAGEMENT FOR ACCELERATOR
CONTROL ROOM APPLICATIONS

P.K. Bartkiewicz, P. Duval, S.W. Herb, DESY, Hamburg, Germany.

Abstract
 The number of control and diagnostic applications in

accelerator control rooms has become very large. Some of
the applications are running permanently, the use of
others frequently depends on the accelerator state. The
shift crew of the control room in DESY, Hamburg
expressed a strong interest in having a console
management system, driven by accelerator-related events
(such as magnet cycling, injection, run, etc.), which
launches appropriate applications and arranges windows
on the screens. As a part of the system a remote
configuration tool should be provided which offers
remote access to each console computer, and permits
definition of the set of applications for a given accelerator
state, as well as remote start, stop and monitoring of the
applications, access to local log files etc.

We describe the implementation of such a system for
Microsoft Windows XP based consoles.

INTRODUCTION
 The HERA lepton-proton collider requires

approximately 20 operational steps, grouped into 5
procedures, to reach luminosity operation. The switching
between steps, and most of operations during each of
steps are largely automated and driven by a sequencer
program. However, there are still approximately 150
diagnostic and control applications, which the shift crew
starts on 25 consoles (PC workstations, running Microsoft
Windows XP). Some of these applications need to be
active for all of machine states, and some are state-
specific and should be active only for a particular
machine state. The complexity of management for HERA
console applications in the control room is also related to
the fact that physicists responsible for machine operation
frequently require special programs which are written for
various accelerator subsystems by different groups of
engineers. There are no firm standards for application
window size, and all applications can be started from any
workstation, so it is important for efficiency that operator
working habits and ‘best practices’ can be codified and
reproduced so that the well known applications appear at
the same console with the same windows geometry. The
configurations must be easily modified and permit
operator intervention when necessary. To make the
preparation time for each state transition shorter the idea
of a ‘Console Daemon’, an automatic console
management tool was introduced.

REQUIREMENTS FOR THE AUTOMATIC
CONSOLE APPLICATIONS

MANAGEMENT

There are several requirements for such a system:

• Each console should be equipped with a server
program, called here ‘Console Daemon’, which runs
invisibly for the operator programs, but turns the
console into a member of a centrally managed
system.

• For the ease of maintenance and further development
an existing network communication mechanism
should be used; this also permits easy porting to
other Microsoft Windows based consoles, for
example for the HERA pre-accelerators.

• The functionality of the Console Daemon must offer
the possibility of defining groups of applications
which can be simultaneously started and stopped,
and the positions and dimensions of windows, once
established, should be preserved for the next
applications starts.

• It is expected, that group definitions, applications,
and windows details would be stored in local,
human-readable files, but the files should be created
and updated automatically by storing a ‘snapshot’
from the current setting of workstation, running
applications, windows geometry, environmental
variables etc.

• In addition, since many of control or diagnostic
applications are written by non-professional
programmers (mostly physicists and hardware
engineers, who often write programs for handling
only one specific measurement), there is a need to
make a periodical ‘cleanup’ of workstations and to
kill half-dead applications which were not properly
terminated (for example applications, which have no
open window, and are therefore invisible, but still
have open communication links, active timers, etc.,
and consume console resources).

• The system should be driven by the existing HERA
sequencer program, but a remote configuration and
management program is also required, as well as
simple command line programs, which might be
used in scripts and batch files.

2005, Hayama, JapanProceedings of PCaPAC

IMPLEMENTATION OF THE
AUTOMATIC CONSOLE APPLICATIONS

MANAGEMENT

Console
Daemon, which is installed on each console workstation,
the Remote Console Screen Manager, an application

 and
supporting the same functionality as the local Console

simple program ‘setconsmode’, which is intended to be
used in scripts or batch files.

Implementation of the Console Daemon
The Console Daemon was written in Visual Basic 6

with very strong use of the Win32 API (mostly related to
functions from kernel32.dll, user32.dll, advapi32.dll,

 shell32.dll, ps.dll). [4,5,6] The server functionality was
implemented by embedding an ActiveX server for TINE
(the RPC-based communications protocol used for the
HERA control system). [1,2] In order not to occupy
space on the Windows task bar or the desktop, the
daemon icon appears only in the system tray (fig.1).

tray: operational mode and editing mode.

Immediately after installation, the Consol Daemon is

recognized by the control network as a TINE server and
can handle remote requests. At the same time the Console

 Daemon can be operated locally; the user can request a
pop-up menu (fig.2) by clicking on the program icon. All
of the functionality available as menu selections is also
accessible through the server interface.

Daemon’s icon.

The Console Daemon has two working modes:
operational mode and editing mode.

The Operational Mode

The operational mode is the default mode, which is
activated after the start of the Console Daemon. Just after
entering operational mode Console Daemon reads its
locally stored XML configuration file. This file contains
definitions of application groups, which are identified as
working modes of the console. For each console mode
groups of applications are listed, and for each application
the name, path, command line arguments, window
captions, and geometry are stored. The first console mode
listed in the configuration file is chosen and become
 ‘active’.
On selecting a console mode, all applications previously
started which do not belong to that mode are stopped, and
all other applications belonging to the mode are started.
After a given period of time, windows are placed in
desired locations and resized to specified dimensions. The
geometry of windows can not be set immediately after the
applications start, since many applications execute a
relative long self initialization stage, so that their
windows are popped up some seconds later. Optionally,
for very important applications, an automatic restart is
foreseen, and as another option, windows geometry and
locations can be kept during the lifetime of the application.
Switching to another defined console mode is possible at
any time by sending an RPC request from the network
client application or by the operator selecting the
appropriate item from the pop-up menu. The switch to the
editing mode can be done locally, by a selection on the
pop-up menu, or remotely, using a dedicated remote
configuration tool.

In addition it is periodically checked whether all
applications have visible windows, to catch improperly
terminated applications which have lost their windows,
but still consume system resources. For that purpose the
list of all available control applications is read, and any
application listed there which is found to be running
without a window, is, after repeating the check several
times, killed (the application might have just been started
and not had enough time to pop up the window). This
mechanism cleans the system and guarantees that all
system resources are freed.

The Editing Mode

The editing mode is used to define console modes and
to build the group of applications for each console mode,
specifying arguments for applications and defining
windows geometry. Although the configuration is stored
in the XML file, the entire configuration process can be
done without the need to edit any files. The typical editing
session proceeds as follows: after switching the Console
Daemon to editing mode the user may create a new mode
by making a selection on pop-up menu and typing a name
of the mode. The newly created mode is added to the list
of existing modes and becomes available on the pop-up
menu. The user chooses the mode to be edited, stops

Figure 1: Icons of Console Daemon, installed in the system

Figure 2: The Pop-up menu, available after clicking on Console

The system consists of three programs: the

Daemon popup menu, and the Command Line Interface, a

providing a remote access to all Console Daemons,

2005, Hayama, JapanProceedings of PCaPAC

applications which will not belong to that mode, starts the
applications desired for the mode, and locates and resizes
their windows. When the setup of applications is
complete, the user requests a save to the configuration file.
The Console Daemon then builds a list of running
applications, and queries the system for the information
about command line arguments which were supplied to
the running applications, starting paths, parent processes,
and geometry and caption of each of opened window.
These data are stored in locally in the XML configuration
file.

Configuring the Console Daemon and some tools
functions

There are some parameters which can be set for the
Console Daemon (fig. 3): how frequently the process list
should be refreshed, the delay between application start
and window positioning, and whether applications should
be started directly or via a launcher script. Additionally
for some crucial for accelerator operations workstations,
auto-restart of applications can be selected, as well as
keeping windows in specified positions. If the options
should be made persistent, the user requests a save to the
XML configuration file.

The Console Daemon creates a locally stored, one day
log file; the most recent messages can be viewed by
selecting the appropriate menu item. Some of these
messages can help authors of applications to learn
whether their applications crashed. For such debugging
purposes Console Daemon offers a window with useful
process information, much of which is not available from
the standard Microsoft Windows Task Manager..

Implementation of the of the Remote Console
Screen Manager

The Remote Console Screen Manager (RCSM), also
written in Visual Basic 6, is a network client with which
users can connect to any of Console Daemons in order to
get the same functionality as that offered by the Console
Daemon local menu. The TINE protocol is implemented
with the ACOP ActiveX control supplied by the TINE
control system. After the RCSM starts, it gets from the
TINE name server a list of the Console Daemons
available in the system. It then queries each Console
Daemon for the information about its configuration and
defined console modes and the corresponding
applications, and builds the tree-list, shown in the left part
of the user interface (fig.4). When a user selects the
console by clicking a tree-list item, the RCSM sends the
request to the appropriate Console Daemon and obtains
the system specific information (such as number of
screens and resolution of each screen), a screen shot, and
information for all running processes. The screenshot
might be presented in 1:1 scale, or fitted to the box. One
and multi- (currently up to 4) screen consoles are
supported. The screen shot can be refreshed at any time
by user request, as can information about the processes.
Information about the selected process and its windows is
presented in the upper part of the application.

Besides the monitoring functionality, the RCSM
provides users with the possibility of starting or stopping
any application available on the network file server. It can
be used to define and select the console mode and, using
movable rectangle shown on the screen shot, to change
the geometry and position of each window. After the
changes are done, user can remotely request the save of
the XML configuration file.

Figure 3: The Console Daemon configuration window.

2005, Hayama, JapanProceedings of PCaPAC

Implementation of the Command Line Interface
In order to make possible control of Console

Daemons by scripts and desktop shortcuts, a simple
command line application was written in the ‘C’ language.
The application accepts two parameters: the name of the
Console Daemon server (which must be a name
recognized by the TINE name server), and a string
identifying a requested console mode. A sample script
switching the modes for two consoles might contain the
following lines:

setconsmode CD_HERACON08 e-injection
setconsmode CD_HERACON09 e-injection

STATUS AND FUTHER PLANS

The Console Daemons have been installed on all
HERA console workstations. For three of the consoles
sets of scripts and associated desktop shortcuts for
switching console modes were created; these are used by
the shift crew to set up consoles for a particular machine

operation with a (double) mouse click. A successful test
of controlling consoles from the HERA sequencer has
also been made. The operational use of sequencer to
drive Console Daemons is being considered for the run
period after the next longer maintenance shutdown of
HERA, in order not to disturb current luminosity
operations.

The Remote Console Screen Manager is still in the
debugging phase.

REFERENCES

Figure 4: The Remote Console Screen Manager, connected to the dual screen console.

[1] http://desyntwww.desy.de/tine/
[2] Philip Duval, “The TINE Control System Protocol:

Status Report” Proceedings PCaPAC 2000, 2000.
[3] J. Maass, “Sequencing and Ramping in Hera”

PCaPAC’99, KEK, Tsukuba, Japan, January 1999
[4] Daniel Appleman, “Visual Basic Programmer’s

Guide to the Win32 API”, Ziff-Davis Press
[5] http://msdn.microsoft.com/library/
[6] http://www.activevb.de

2005, Hayama, JapanProceedings of PCaPAC

