
WRITING TINE SERVERS IN JAVA

Philip Duval and Josef Wilgen
Deutsches Elektronen Synchrotron /MST

Abstract
 The TINE Control System [1] is used to some degree in
all accelerator facilities at DESY (Hamburg and Zeuthen)
and plays a major role in HERA. It supports a wide
variety of platforms, which enables engineers and
machine physicists as well as professional programmers
to develop and integrate front-end server software into the
control system using the operating system and platform of
their choice. User applications have largely been written
for Windows platforms (often in Visual Basic). In the next
generation of accelerators at DESY (PETRA III and
VUV-FEL), it is planned to write the TINE user-
applications primarily in Java. Java control applications
have indeed enjoyed widespread acceptance within the
controls community. The next step is then to offer Java as
a platform for front-end servers.

 In this paper we present the TINE Java server API and
first results using TINE Java servers. In particular we
shall discuss the pros and cons of using Java as a platform
for front-end and middle-layer servers and present timing
results concerning Java servers using native Java, Java
plus JNI, and native TINE servers.

 The TINE Control System is a distributed, object-
based system which runs on most platforms (legacy as
well as modern) offers numerous services (both central
and distributed) and enjoys a widespread use in the
accelerator facilities at DESY. The TINE protocol offers
high performance under extreme circumstances, such as
transmitting large video frames at many hertz to multiple
clients via multicast. Historically, no matter what
platform or what language is being used for TINE clients
or servers, the core TINE kernel has been written in C.
Thus clients and server using say Visual Basic in
WINDOWS make use of ActiveX controls (or VBX
controls) or direct DLL calls which themselves call into
the TINE kernel. Likewise, clients or servers written in
LabView make use of VIs which interface to either TINE
DLLs or shared TINE libraries, and so on. The Java
TINE client API on the other hand interfaces to tine.jar,
which is written entirely in Java. Certain aspects of the
TINE C kernel were ported to Java, but to a larger extent,
the TINE kernel was simply rewritten in Java, taking full
advantage of the Java language where possible. All
efforts were made to maintain as many similarities in the
basic TINE API as possible. This does not mean that they
are identical. Calls such as “AttachLink()” and
“ExecLink()” are represented by the methods “attach()”
and “execute()” of the representative TLink Object. Note

that the TINE protocol does not deal so much with ‘puts’
and ‘gets’ as with data ‘links’.

One’s first inclination when offering Java in the
Control System’s portfolio is to say that we don’t need to
worry about a Java Server API since front-end servers
will always have to access their hardware and that is best
left to code written in C. Furthermore, if there are real-
time requirements, Java would not be an acceptable
platform owing to Java’s garbage collection kicking in at
indeterminate intervals.

 Nevertheless, Java is a powerful language and offers
numerous features and a wonderful framework for
avoiding and catching nagging program errors. Thus
there does in fact exist a strong desire to develop control
system servers using Java. If these are to be middle layer
servers, which manage and interpret data from front end
servers, then the hardware issue is moot. Even front end
servers can be written in Java when the hardware IO is
made available by other means, such as a JNI or a CNI
interface to the C libraries which do the ‘dirty work’.

It still remains to clarify whether issues of performance
or garbage collection preclude writing effective servers in
Java.

A first effort has now been made to include the TINE
server API within the tine.jar Java archive, so that we can
make the initial performance tests. We shall report on
these below.

 The current Java TINE server prototype offers
approximately 75 percent of the functionality of a
standard TINE server. Missing are such subsystems as
the local alarm system and the local history system.
Furthermore the current prototype does not offer
initialization via a configuration database. For our
purposes at this juncture however, these are trivial points.
The server developer will not deal directly with these
aspects in any case. The fundamental server management
kernel and API are available, and it is primarily these
which we present here.

We first compare several Java Virtual Machines (JVMs)
with regard to fairly general concerns, not specifically
related to a TINE server. Then we shall turn our attention
to the performance of our TINE server prototype.

collection might have on our test server application by
having a look at the repetitive instantiation of objects. By
instantiating objects in a tight loop we notice that there
are occasional delays on the order of 10 to 100
milliseconds, depending on the Java Virtual Machine

 INTRODUCTION

 INITIAL RESULTS

Effects of Garbage Collection
 We can get a handle on the side-effects garbage

2005, Hayama, JapanProceedings of PCaPAC

(JVM) being used, which appear as spikes in a trend chart
of the instantiation execution time. It also turns out that
not only the delay is dependent on the JVM, but the
frequency intervals with which these delay spikes appear
depends on the JVM being tested. At the programmer
level, such spikes can sometimes be avoided by using
available programming techniques (such as Object
caching) and exercising a certain discipline concerning
‘new’ operations. However this is not always possible or
desirable and sometimes defeats the purpose of using Java
in the first place. On the other hand, in normal operation
a server will not be instantiating objects to such a degree
and will be more or less operating in a steady state. To be
sure, as clients come and go, the TINE connection tables

will be populated or de-populated. Furthermore, Java
methods such as ‘toByteArray()’ will in fact inherently
create objects which are destined to be discarded. As long
as this is managed efficiently, the effects of garbage
collection can be minimized. The acid test will in fact
involve running a TINE Java device server under realistic
conditions.

A trend chart showing the magnitude of such delay
spikes is shown below in figure 1. Possible effects of
adjusting configuration parameters in the Java Virtual
Machines were not investigated.

 We have examined certain performance characteristics
for the following Java Virtual Machines:

• J2SE 1.4 und 1.5
• j2me, Personal Edition
• kaffe
• jamvm, sablevm
• gcj, gij

In making benchmark comparisons we focused on the
following aspects:

• A comparison of the performance characteristics and
required resources of byte-code interpreters, JIT
compilers, and at least one native compiler. In
particular, how do the alternative JVMs stand up in
comparison to J2SE/J2ME?

• Is Java a viable solution on systems with limited
resources?

• What can we say about the performance of JNI (Java
Native Interface) regarding 1) its usage on different
JVMs, 2) the different methods of accessing objects,
and 3) a comparison with CNI (Cygnus Native
Interface)?

 If we lump assorted benchmark tests (such as object
instantiation, matrix multiplication, hash list access, File
IO, Exception handling, etc.) together, we can get an idea
of an overall comparison by looking at Figure 2. below.
In this comparison we see that J2SE along with Kaffe and
GCJ all outshine the alternative JVMs J2ME, jamvm,
sablevm, and GIJ. As J2ME, jamvm, sablevm are pure
byte-code interpreters, this is not surprising.
 On the other hand, if we focus on the resources needed
by the JVM, we note that J2SE 1.4 and 1.5 demand
considerably more disk space than any of their rivals.
 The time required for loading the JVM and starting a
Java server was seen to be fairly uniform across the JVMs
examined with the exception of J2ME, which was a factor
of 6 faster than, for example, J2SE 1.5.

JVM Performance Comparison

Figure 1: The influence of garbage collecion on the instantiation of objects in a Java Virtual Machine.

2005, Hayama, JapanProceedings of PCaPAC

Figure 2: Rough comparison of general benchmark execution time for different Java Virtual Machines.

As to a comparison of the respective performances
relating to access to C libraries via JNI, we note that most
JVMS performed more or less equally well regarding
getting and setting fields. The marginal, overall “winner”
was Kaffe, largely due to its handling of method calls
(J2SE 1.5 was a factor of 3 slower). In a category all it
own was GCJ, which alone makes use of the CNI
interface. As GCJ compiles the java code to native, the
interface to C libraries (after the fact, as it were) is
expected to more efficient and it is. In fact, with CNI and
GCJ the overhead of all manner of access (get/set fields,
method calls) is essentially negligible. Furthermore, the
interface to a C library is in this case straightforward and
requires no java ‘stub’ as in the case of JNI.

TINE Server performance
The bottom line is of course: Will my Java server run

stably and steadily, unencumbered by problems of
resource depletion or garbage collection, etc? For a wide
variety of device-servers common to accelerator controls
this is surely true. The benchmarks alluded to above were
made on a “run-of-the-mill” 500 MHz Pentium III PC
with 256 Mbytes of RAM. Even on such a machine, the
worst performing JVM above would be adequate for
delivering “slow control” parameters to a number of
clients at 1 Hz.

To help quantify these assertions, we examine a TINE
java server, which does nothing more than update a sine
curve at 10 Hz (by itself somewhat computation
intensive). The server also offers properties to get and set
the frequency and amplitude of the sine curve. We are
interested in the reliability of data acquisition from a
number of clients being updated at 10 Hz, and in the
reliability and turnaround-time of accessing one of the
properties as a ‘get’ call (for instance, issuing a get call
inside a tight for loop) . If both tests are made
simultaneously, it should also show any effects of garbage
collection which might arise on a device-server running in
steadystate. If the client making the ‘get’ calls is not the
same as one of the clients receiving the sine curve, it will
come and go in the server’s client table.

The initial steady-state test involves running three
clients each requesting a sine curve trace (256 double
float values, i.e. circa 2 KByte payload) at 10 Hz. One can
easily keep statistics at the client side to determine
whether an expected incoming packet “misses” (either
fails to come or is outside the 100 millisecond response
window). A 24 hour test shows no misses, as long as the
server and clients are allowed to run without being
influenced by starting and stopping other applications on
the same machine. The steady-state can easily be
disturbed by starting, say, a web browser or word
processor. But this is expected and under normal
conditions is not applicable. Servers typically run in a
“dark corner” somewhere are generally not being used as
web browsers or word processors. The same holds true
for client programs running on consoles in the control
room.

The second test involves issuing several thousand
synchronous ‘get’ commands inside a loop and examining
both the reliability and turn-around-time. We should point
out that the current TINE server prototype offers only
UDP communication (which is the default TINE protocol),
so in order to minimize packet loss, the client and server
run on the same subnet and on the same switch segment.
The initial results are likewise very encouraging. There
were no timeouts or dropped requests (over several
hundred thousand attempts), and the turnaround time was
seen to be on the order of 2 milliseconds per call for J2SE
1.4. Although this is a factor of 5 or so larger than the
turnaround time when accessing a C native server under
similar conditions, it is nonetheless acceptable as is,
especially when considering that the current TINE Java
server is only a prototype which has not yet been fully
optimized.

Finally, we run both tests together in order to test
reliability of the incoming sine data against possible
distortion due to garbage collection where client objects
are being constantly created. Repeated testing showed no
discernable differences in performance as long as the
clients running the independent tests were on different
machines.

2005, Hayama, JapanProceedings of PCaPAC

CONCLUSIONS
Java is absolutely suitable for device servers which do

not have real-time requirements. When large amounts of
data are produced, I/O on byte arrays can be a bottleneck,
especially with byte-code interpreters.

The native compiler GCJ has almost no performance
advantage over a JIT Compiler. The memory
consumption is also comparable. The major advantage of
using GCJ is the ease in linking C library code via the
CNI interface.

A byte-code interpreter can be expected to be a about
factor of 10 slower than a JIT compiler. For device
servers which do not have CPU-intensive tasks, this
should still be fast enough.

Sablevm and jamvm are excellent open source
alternatives to J2ME. Both have rich libraries (GNU
Classpath) and Sablevm is available for many platforms.
J2ME on the other hand has a very limited library which
is quite out of date.

It is still too early to say which JVM and which
Cinterface will be the preferred solution for TINE servers
at DESY. In the end, the ‘preferred’ solution could
depend on the platform being used.

REFERENCES
[1] http://desyntwww.desy.de/tine

2005, Hayama, JapanProceedings of PCaPAC

