
TCP/IP BASED PLC CONNECTION TO DOOCS

Gerhard Grygiel, Michael Böhnert, DESY Hamburg

Abstract
In industrial control systems the Ethernet based

communication is gaining a more dominant role. For
several tasks and subsystems of the TTF VUV-FEL
(Vacuum-Ultraviolet Free Electron Laser at DESY) PLCs
(Programmable Logic Controllers) are used in reliable
low level controls. These PLCs are connected via TCP/IP
communication to DOOCS [2] (Distributed Object
Oriented Control System). A class library on the DOOCS
server side implements the interface to the PLC. It
contains functions for the TCP/IP communication and the
methods to exchange different data structures of a PLC.
The developed class library allows script based server
generation for different PLC applications. The DOOCS
server processes are running on Unix/Linux computers. In
case of problems, the network-debugging on Unix/Linux
computers is easy. There are many network analyzing
tools available. This paper also discuses the error
handling and TCP/IP configuration. At start-up or after
connection lost special precautions have to be taken to
resynchronize and to protect the valid data. TCP/IP
configuration parameters are online available as well as
communication statistics.

INTRODUCTION
At the outset of industrial revolution relays were used

to operate automated machines, and these relays were
interconnected using wires inside the control panel.
Nowardays PLCs (Programmable Logic Controllers) are
used for all kind of factory automatisation. In large
systems like TTF VUV-FEL a growing number of
distributed PLCs are installed. Therefore a DOOCS
library was developed which hides all the complexity of
communication and programming from the developer. For
the developer it is quite enough to fill out a definition file.
The automated server generation script then produces a
full featured DOOCS server.

GENERAL PROCESS

PLC Process (Siemens S7 [3]):
The PLC can receive raw data in a TCP/IP packet or

send raw data in a TCP/IP packet from/to the DOOCS
server. A timer in the main PLC program cycle (OB1)
triggers the send and receives function to the
communication processor. Data blocks for send and
receive needs to be defined before.

The PLC collects the 'data to send' in a data block.
Whenever the timer calls FC5 (send to CP) the data are
transported to the communication processor. If no
connection is established the FC5 ignores the data. If the
connection is established and the remote side is not
available the FC5 returns an error. After a successful send
the FC6 can be used to check if there is new data for the
PLC to process. These data could be setpoints, commands
or alive telegrams.

DOOCS Server Process:
The DOOCS Server starts one thread for receiving data

from the PLC and another thread for sending data to the
PLC. Both communication threads are using the same
TCP/IP socket and both threads are able to initiates the
connection. A mutex is used to take care that only one
thread at a time talks to the PLC.

For the connection the SOCK_STREAM option is used.
It provides a sequenced, reliable, two-way, connection-
based byte stream. The maximum data size of the socket
buffer needs also to be defined. To be able to define
timeout values for the connection process, it is necessary
to set the socket to non-blocking IO and use instead the
select [4] call to check if the connection is established. If
the connection is done the socket has to switch back to
blocking IO. To prevent not to overrun the PLC, an
adjustable time will be spent for waiting.

The receiving thread checks a communication flag. If
this is ok it defines a timeout value for a specified time to
get data from the PLC. The select call is used to check for
new data. The select call returns in the moment when the
communication processor from the PLC gets new data.
But that does not mean the complete data block is
available in the communication processor, it only means
that the data transport from the PLC to the

 OB1
main
plc

cycle

 FC5
 send to CP

 DB20
send

data block

 FC6
 recv from CP

 DB30
receive

data block

 timer

 CP54

co
m

m
un

ic
at

io
n

pr
oc

es
so

r

TCP/
IP

fail if connected

 init select timer
select()

 connect()

 recv() all

ok

 return()

fail

 check header

ok

ok

 close() socket

 loop, up to
 MAX_PKGS_PB

 select()
 recv()

fail

fail

ok

ok

fail

 copy buffer
ok

fail

not all

Figure 2: The DOOCS read thread.

Figure 1: The PLC Process.

2005, Hayama, JapanProceedings of PCaPAC

communication processor has started. Therefore it is very
important to wait some micro seconds (adjustable) on the
DOOCS server side before the data receiving starts.
Otherwise it is possible to get 50 byte in 50 separate
TCP/IP packages. If receiving fails or not enough data
was received the old connection will be closed and a new
connection process starts. For the standard PLC DOOCS
communication we have defined a so called data header.
In the first two data words the data size and the last part
of the own IP address is set. The data header check can be
switched on or off. On the PLC side the header will be
checked in addition. If all checks are ok the data is copied
and converted in to the proper byte order to be available
in a DOOCS data block and for archiving. Also some
statistic values over the communication are stored.

The DOOCS server collects all commands for the PLC
and puts them to a send queue. The sending thread gets
the data from the send queue. As long as data is in the
send queue the sending thread delivers the data to the
PLC. The queue mechanism guarantees that no command
will be lost. In the send thread there is also an adjustable
wait implemented which avoid an overrun of the PLC
with data packets.

DATA FLOW AND TIMING

For the beam inhibit system at VUV-FEL a connection
with 10 Hz and 200 bytes per packet is in operation. Tests
with this beam inhibit system PLC points out that the
limit seems to be at 160 Hz with 200 bytes per packet.

DOOCS SERVERS
The DOOCS server model builds up a particular

hardware device into a C++ object. This means, that the
software describes the properties of this hardware device
in a one to one relation. The server does all data
processing and calculations. Libraries archive and
configuration files are on the local hard disk. At start-up,
the server creates as much as needed objects from a
configuration file. The two main classes are:

Eq_fct class: is the container for all properties, an
equipment function represents a device or only one
location of a device.

D_fct class: describes a single property/value in an
equipment function.

A DOOCS server is a standalone UNIX process which
is permanently running. On the network it talks Sun
RPC/XDR and TINE protocol. All items related to

permissions, configurations, client connections and a lot
more are done inside in a server library. The server
programmer takes only care on the mapping from
hardware to DOOCS properties. In DOOCS terminology
a peace of hardware is represented as an equipment
function (eq_fct) and all properties, that are accessible
from the network, are represented as data functions
(d_fct).

THE DOOCS PLC CLASS LIBRARY
A “D_plcnet” class is responsible for the PLC

connection. It holds the configuration parameters and
manages the data connection to the PLC. The data
processing runs in a separate thread for every PLC. There
are many ways of data setting. Data setting can be done
on demand, when new data arrived or in the update
function of the DOOCS server which is called by an
adjustable timer.

For all major PLC data types corresponding classes are
available in the DOOCS PLC class library.

For example to communicate to a float in the PLC the
following constructor in the device server is required:

D_float_plcnet("FLOAT1 my float value", PLC, this,
RO data_word);

• FLOAT1: DOOCS property name.
• PLC: pointer to the D_plcnet class which holds the

data block to represent.
• this: pointer to the DOOCS container for the

properties (eq_fct class).
• RO: a value of 1 means this property is read only.

It dose not send data to the PLC.
• data_word is the starting position from the

beginning of the PLC data block.

The D_float_plcnet class represents a PLC word which
means two bytes. It is able to do polynomial data
corrections, for instance to convert a PLC input value 0-
65536 to 0-10 bar. The history is also managed in this
class. For all major data types PLC classes are available
(bit, int, float(16bit), iee32float). The programmer don't
care about data representing or archiving, it is only
necessary to define a variable for every PLC value which
will come up in the DOOCS property list and to define
one variable for the PLC itself. It is also possible to write
a DOOCS server which represents more than one PLC.

ERROR HANDLING
The error handling is done on the equipment function

level (device/location). Every data function
(property/value) can produce an error (error bits, hi or low
value errors...). If an equipment function has more than
one error source per location, for instance two or more
data functions which provides errors independently, the
reset error needs a special handling. There is only one
error-value per equipment function. Every data function
holds own error and severity value internally and the
corresponding gets and set public member functions. The
error condition in the device instance reflects the logical
or of all data functions.

DOOCS
server

Operating
System

2 s delay

connect

select

select

read

1 ms sleep

Communication
Processor

PLC
Program

data to cp

ack.
timer
10 Hz

timer
10 Hz

2.
3"

10
0

m
s

processing

timer
10 Hz

0.95 ms

1.01 ms

10 ms

10.5 ms

110 ms

2.
3"

10
0

m
s

UNIX PLC

Figure 3: 10 Hz. 200 Byte.

2005, Hayama, JapanProceedings of PCaPAC

NETWORK CONFIGURATION, PLC
COMMISSIONING

At first the PLC IP address, the port, and the block size
for read and write data has to be defined. The timeouts
and wait times have to be defined:
• Set the timeout 5 times longer than the PLC send

cycle.
• The connect wait time times longer than the PLC

send cycle.
• The select wait depends on the block size to read.

A good starting value is 1 ms per 100 byte.

The following checks can be switched on:
• With or without header check.
• Ignore TCP/IP packages less then N bytes.
• Maximum TCP/IP packages per data block.

SCRIPT BASED SERVER GENERATION
Mainly all DOOCS PLC servers are generated with the

automated server generation script. The script is able to
generate the source for a complete DOOCS server from a
definition file. All PLC servers have mainly the same
structure but very different data to handle. The script
extracts all needed variables from the definition file. It
makes some general checks e.g. it checks that all needed
template- and data function files are available. It creates
the source and header files, the makefile and a first
configuration file for the new server. The files and
definitions for Debian package creation where also
produced.

The main part of the definition file in figure 5 contains
the constructors. The D_plcnet is the class for the
communication with the PLC. The D_cmd class is used
for commands to this PLC. The next lines are constructors
for float, integer and bit representation.

 D_plcnet plcnet_("PLC.IP_PLC",this,0)

 D__cmd cTyH_("THY.ON thyratron on",plcnet_0,this, 8, 0, 5, 1)

 D_vph_plcnet tHV_("THY.FIL_VOLT voltage",plcnet_0, this, 1, 0)

 D_int_plcnet tSt_("THY.STATUS status",plcnet_0, this, 1, 5)

 D_bit_plcnet tSR_("THY.READY thyratron ready",plcnet_0, this, 1, 5, 0)

The automated server generation script relieves the

programmer of writing again and again the same
structures for device servers and prevents mistyping. With
the assistance of the automated server generation it is easy
to handle a bunch of servers which differs only by their
names and some simple properties. Therefore it is only
necessary to develop a simple definition file.

PLC SUBSYSTEMS CONNECTED TO
DOOCS

There are water cooling systems for the gun and for
klystrons. Complete klystron subsystems build by
industry. Valve controlers and other vacuum components
build at DESY and interlock systems e.g BIS (beam
inhibit system) and the laser interlock.

ACKNOLEDGEMENTS
We like to thank all the colleagues who have

contributed to the development and commissioning of the
TTF VUV-FEL PLCs connected to DOOCS via TCP/IP.
In particular we wish to thank Olaf Krebs and Slava
Korobov for their helpful suggestions. We also thank
Arthur Agababyan for his help on thread programming in
DOOCS servers.

REFERENCES
[1] DESY Deutsches Elektronen Synchrotron

http://www.desy.de/

[2] DOOCS Distributed Object Oriented Control System
http://doocs.desy.de/

[3] Siemens AG
http://www2.automation.siemens.com

[4] Zotteljedis Tipps zur Socket-Programmierung
http://www.zotteljedi.de/doc/socket-tipps/index.html

configuration

validity check

statistics

Figure 4: DOOCS PLC configuration.

Figure 5: Part of the definitiion file.

2005, Hayama, JapanProceedings of PCaPAC

