
EMBEDDED LINUX AND CORBA IN THE GSI CONTROL SYSTEM

K. Höppner, L. Hechler, P. Kainberger, U. Krause, GSI, 64291 Darmstadt, Germany

Abstract
The current GSI control system is based on VME sin-

gle board computers with M680x0 CPUs at front-end level
and OpenVMS at operating and configuration level. Com-
munication is done by a proprietary in-house networking
protocol.

A renovation project started to migrate to more actual
components. Commercially available PowerPC boards re-
place the M680x0 boards which had been specially man-
ufactured for GSI. The core software is build newly, im-
plementing a new object oriented device model. It allows,
however, to re-use the code of the existing device imple-
mentation which contains the specifics to handle the GSI
accelerators.

Rather than integrating our in-house networking proto-
col in the newly build system, communication will be based
on CORBA in the future.

MOTIVATION

The control system for the GSI accelerators is in opera-
tion since 1989. Since then, according to the continuously
extended operation of the accelerators, the controls were
more and more refined to handle a greater spectrum of de-
vices and to provide greater flexibility, but no substantial
modernization could be done up to now. As a result, the
system depends on many components dating from the time
when the system was developed. Purchasing spare parts
became a problem, and functionality is no longer adequate
for state of the art developments.

A renovation of central parts of the system has become
indispensable [1]. After preparing the basis for future soft-
ware developments [2], the most crucial parts of the system
can be modernized now: The communication network and
the access points at the front-ends, the device presentation
controllers with their network interface.

ACTUAL CONTROL SYSTEM

Hardware Layout

The control system was designed as a decentralized dis-
tributed system (Fig. 1), according to the nowadays well
established standard model. The equipment to be con-
trolled is connected by a field bus to front-end controllers
which communicate by Ethernet with operation worksta-
tions. M68020 VME boards are used at the front-end level
while the operations level uses OpenVMS Alphas.

Databases

dev c1

dev c2

EC

DPR

dev d1

dev d2

EC

DPR

DPC ETH

16 x 255 Events

Timing Signals

EC

DPR

dev b1

dev b2

EC

DPR

dev a1

dev a2

DPC ETH

Services

Ethernet

Different to many other systems; the front end side is
implemented as two layers, device presentation computers
(DPC) as access points for operations requests, and equip-
ment control (EC) computers to service the devices. As-
signing the tasks to different processors eases ensuring pre-
cisely timed device control: Only the ECs have to imple-
ment real-time functionality. Synchronization is achieved
by signals from the timing system.

One DPC serves up to nine ECs which are all located in
the same VME crate. Connection to the network is by spe-
cial network controllers, also located in the VME crates,
which closely interact with the DPC. ECs and DPCs com-
municate by common memory on the ECs, and by VME
interrupts from the ECs.

Software Characteristics

The control system models the equipment as devices
with propertiesinstead of independent channels. A prop-
erty is an action to be executed on a device, generally asso-
ciated with data: Setting or reading values, or executing a
function like reset.

Devices are identified by unique names, the nomencla-
tures. Names are also used to indicate the properties. Tab. 1
shows some properties of a magnet’s power supply.

Each property is implemented as a function on the DPC

Table 1: Properties of a Power Supply

Name Access Data Description
CURRENTS read/write 1 float set value
CURRENTA read 1 float actual value
POWER read/write 1 int16 mains power
VERSION read 48 char version of software
RESET call – reset

Figure 1: Hardware layout of GSI control system.

2005, Hayama, JapanProceedings of PCaPAC

level, a user service routine (USR). When a property of a
device is accessed, the corresponding USR is executed. A
central manager on each DPC handles all devices with all
USRs and implements the mechanism for property execu-
tion, which is calling USRs. The USRs don’t interact with
the equipment of the accelerator directly. They provide the
data for the EC level, or initiate actions on the ECs.

A general interface is provided which is used by all op-
eration level applications. It implements synchronous as
well as asynchronous commands. A special kind of asyn-
chronous access, called connected access, activates multi-
ple property execution, either periodically or on selected
machine events.

Several data types are supported in device access: Single
values or arrays of different types, covering various sizes
of signed and unsigned integers and floating point data.
Declaring data type and count by descriptors allows using
a single interface for all kinds of data.

Commands are specified by the device’s nomenclature
and the name of the property. The access interface converts
the command to an intermediate format and delivers it for
execution to the DPC by which the device is handled.

Status of the Control System

The GSI control system, like other software at that time,
was implemented for a dedicated environment only: One
type of VME boards with M68000 processor, running a
real-time kernel on DPCs and ECs, and VMS on the op-
eration level. Except for the operating system, all software
on the VME level was developed at GSI. Even the network
communication was build from scratch, establishing a pro-
prietary protocol which is implemented only on the VME
network boards and for VMS.

Primary focus was not on portability and sharp interfaces
between components. As a result many dependencies be-
tween the parts of the system exist which make modifica-
tions difficult. Therefore, up to now newer components
were only introduced when they are very similar to the
original ones: VME boards with M68020 processors and
OpenVMS Alphas.

Now the limitation to M680x0 VME boards and to
OpenVMS, and the low functionality of the proprietary
network, providing UDP functionality only, has become
a heavy burden in maintenance and a severe obstacle to
further extensions of the system. The DPC boards, man-
ufactured specially for GSI, are no longer available, and
the limitation to OpenVMS workstations does not cope for
technological progress in the Unix and Windows area. A
significant modernization cannot be delayed further, where
most urgently the DPCs have to be replaced.

SYSTEM UPGRADE

Step by Step Migration

Instead of modernizing the old system it might look eas-
ier to switch to another one. But this is not a realistic op-

tion. The multi-beam operation of the GSI accelerators in
which up to 5 experiments are served, on a pulse to pulse
basis, with up to 3 different ion beams, needs specific han-
dling in the control system. Interfacing the broad spectrum
of equipment specifically developed for the GSI pulse to
pulse switching could only be done by customized USRs
and their counterparts on the ECs.

The effort to implement similar adaptations in another
system would be far too high, especially since the accelera-
tor is operated continuously with only four short shut-down
periods every year. Only stepwise migration can be done,
modifying in every step only small parts. This holds espe-
cially for the device specific adaptations, the USRs. They
implement the specifics for the GSI devices and the GSI
accelerator operation. To assure the existing functionality
of the controls, the code of the USRs has to be kept. Even
small modifications may have unpredictable effects.

Many hardware dependencies, as well as the close inter-
action with the network processor, would make porting the
system core of the old DPC software extremely cumber-
some. Rebuilding the central parts, including the network,
was therefore preferred. Using a TCP/IP based communi-
cation allows to use the operating system support for the
on-board network port and to skip the extra network board
needed today. CORBA will be used as high level protocol.

is acceptable. Many components which had to be build te-
diously in the old system are now available ready to use.
Today’s level of software support, like theC++STL or
CORBA, eases development further.

Architecture

A board with an up-to-date processor should be used to
replace the old DPCs. The processor should use the same
byte order as the EC’s M68020 because it has to interpret
the common memory on the EC, used for communication
between the boards. Decision was for a PowerPC board1.
Since all time critical actions are handled on the ECs, no
real-time capability is needed. Therefore Linux could be
chosen as the operating system. It allows comfortable soft-
ware development and is nowadays well established in em-
bedded applications.

Object oriented development is used for the newly build
software. The object-like device representation in the GSI
control system suggests handling devices as objects on the
DPC level. The specific adaptations to the GSI environ-
ment, the USRs, can then be reused as the object’s methods.
A general interface to call the USRs is part of each device.
Access to this interface is, by CORBA calls, possible over
the network.

Reusing the existing USRs, with minor modifications,
reduces the newly build parts to a general device which can
be specifically extended by the given USRs, and the access
mechanisms to execute a USR by calling a property. Addi-

1CPU 86, Microsys Electronics GmbH, 82054 Sauerlach, Germany,
http://www.microsys.de

Effort for rebuilding centralpartsof theDPC’s software

2005, Hayama, JapanProceedings of PCaPAC

tionally a manager has to be provided to handle the device
objects. According to configuration lists it creates device
objects and surveys them during their lifetime. This device
manager has to interact closely with the system core on the
ECs.

Device Access and Networking

In contrast to the existing system with its central man-
agers on the DPCs, the renovated system implements dis-
tributed command execution as part of the device objects.
Each device object has a CORBA access interface which
allows communication directly with the devices instead of
a central device manager.

The access interface provides the functionality of the ex-
isting operating level interface. Synchronous and asyn-
chronous commands as well as multiple property execu-
tion are supported. Properties are specified by their names.
Asynchronous calls are handled in separate threads, return-
ing the result by callback object.

Several formats of data have to be supported for com-
mand execution. Rather than explicitly using error-prone
descriptors, a general data container is used. It holds data
types actually supported in the control system, either sin-
gle values or arrays. The container provides automatic data
conversion. Items can be read from the container in any
format, as long as conversion from the internal format is
possible. Using dedicated methods for storage and retrieval
ensures type safe handling of the various types, at least at
runtime.

Access to the devices is available, via CORBA, from
anywhere in the network. Locating the device, given its
nomenclature, is easily achieved by name service which is
generally provided with a CORBA implementation.

The new interface implements the characteristics of the
old access interface. This allows to build the old interface
as a wrapper around the new one. Existing operation level
applications don’t have to be modified, only the extended
interface has to be linked. Internally the old proprietary
communication may be used in parallel. It is not neces-
sary to install the new DPC software at the same time in all
45 VME crates of the facility. Smooth stepwise migration
is possible.

Connection to ECs

The new DPCs have to operate with the existing ECs.
Communication between a DPC and its ECs is by a com-
mon memory located on the ECs which is accessible via
VME bus from the DPCs. ECs cannot access the VME
bus, information exchange is from the DPC always. ECs
only can signal VME interrupts to their master DPC.

The old DPC hardware maps VME addresses in the pro-
cessors address space. All software on the DPC can ma-
nipulate all resources freely, also on the VME bus. In a
multi-user operating system like Linux, access to central
resources is restricted to kernel level to prevent corruption
of the system by faulty applications. A driver for the VME

bus, as well as a kernel module to handle interrupts, are
provided with the board. To provide EC interrupts to the
applications, a driver was developed.

A rather obscuring part of the existing front end system
is the connection between DPC and ECs. Used by many
units, it is implemented as one big structure where each
application uses its own region, which in turn is a specific
structure. Each unit which uses the common memory has
to know the full declaration to be able to access the part it
uses. The layout must be interpreted identically on DPC
and EC. Since both boards use the same processor, this
was achieved by using the same declaration and the same
compiler for both.

Using identical declarations and the same GNU C/C++
compiler for EC and DPC, the PowerPC variant introduced
extra padding bytes to improve memory access. An identi-
cal layout could be achieved by forcing both compiler vari-
ants to generate naturally aligned memory layout. Never-
theless, dependencies from using complex structures which
have to be interpreted identically in all software compo-
nents cannot be handled in the long term.

To decouple the modules, the common functionality of
the EC is encapsulated in classes. Only theses classes are
used by the new system core on the DPC. The memory
layout is hidden completely.

Unfortunately, similar dependencies are implemented in
the USRs. Here, at least, working with a reference of the
device’s specific data only instead of the common memory
as a whole reduces the dependency.

Device Implementation

Devices on the DPCs are characterized by their USRs
which implement the properties, and specific data to hold
the device’s state. Device specific data are stored in the
common memory area on the ECs which is accessible from
the DPCs. The common memory acts also as link to the
USRs counterpart on the ECs which handle the equipment
to be controlled.

All USRs are implemented as functions with identical
parameter list. To re-use the existing code it is transferred
to a standard method, either read, write or call, of new Usr
classes, one for each USR. Each device object holds a list
of its Usr objects, which is filled when the device object is
created. Each Usr object stores the name of the property it
represents. When a command is executed, the responsible
Usr object is searched according to its name, and its read,
write or call method is executed. No specific knowledge
about the device is needed to determine and execute a read,
write or call method of an Usr class. Command execution
is, for all devices, inherited from one base class VmeDe-
vice. Handling the list of Usr objects, and retrieving a spe-
cific one is easily implemented using the set-template from
the STL.

Modifications in the old USRs mainly affect the parame-
ter list. USRs worked on the common memory as a whole.
This memory area contains an array of device data, one el-

2005, Hayama, JapanProceedings of PCaPAC

ement for each device handled by an EC. The data for the
specific device is referenced by an index in this array, pro-
vided when the USR is called. Each Usr object in contrast
operates on the device’s specific data only via a pointer to
this data, set when the device object is created. Instead of
interpreting the whole common memory, Usr classes need
only the knowledge of the device’s specific structure. This
is another step to decouple the implementations on DPC
and EC.

A second modification affects the data associated with
the property, e. g. the set value for the current. To support
different types in the unique parameter list, data are ex-
changed by an unsafe void pointer. Downcasts inside the
old USRs restore the original types. Usr classes operate
with the data container used also in the operation level in-
terface. Explicit methods for storage and retrieval ensure
correct usage of data types.

AccDevice
_ n o m e n : s t r i n g

+ n o m e n ()
r e a d ()
w r i t e ()
c a l l ()
r e a d C o n n e c t ()
w r i t e C o n n e c t ()
c a l l C o n n e c t ()
d i s c o n n e c t ()

VmeDevice

_ e q M o d N a m e : s t r i n g
_ a c c S t a t e : A c c e s s S t a t e
_ d e v I n f o P : D e v I n f o*
_ u s r s : U s r S e t
+ o f f l i n e ()
+ o n l i n e ()
+ e q M o d N a m e ()
+ a c c e s s S t a t e ()
+ d e v I n f o P ()
+ s e t D e v C o n s t a n t s ()
r e a d ()
w r i t e ()
c a l l ()
r e a d C o n n e c t ()
w r i t e C o n n e c t ()
c a l l C o n n e c t ()
d i s c o n n e c t ()

UsrSet
 _ u s r S e t : S e t O f U s r s
+ a d d U s r ()
+ f i n d U s r ()
+ u s r C n t ()

Usr
 _ p r o p e r t y : s t r i n g
 _ p M o d e : P r o p M o d e

+ r e a d ()
+ w r i t e ()
+ c a l l ()
+ p r o p e r t y ()
+ p r o p M o d e ()

ReadField
 _ d e v : M a g n e t*
+ r e a d ()

WriteField
 _ d e v : M a g n e t*
+ w r i t e ()

WriteGain

 _ d e v : G r i d *
+ w r i t e ()

Magnet
 _ d e v C o n s t : D e v C o n s t D e s c
 _ d e v D a t a P : D e v D a t a T y p e*
+ o n l i n e ()
+ o f f l i n e ()
+ s e t D e v C o n s t a n t s ()
+ d e v D a t a P ()
+ d e v C o n s t P ()

Grid
 _ d e v C o n s t : D e v C o n s t D e s c
 _ d e v D a t a P : D e v D a t a T y p e*

+ o n l i n e ()
+ o f f l i n e ()
+ s e t D e v C o n s t a n t s ()
+ d e v D a t a P ()
+ d e v C o n s t P ()

1

0 . . . *

1

1

1 1 1

FIRST EXPERIENCE

The new board is supplied with a pre-configured Linux
operating system. Even with modest experience with em-
bedded Linux it was possible to get the board operational in
very short time. Also a development environment, with all
board specific adaptations including VME driver and inter-
rupt handling, was delivered [3]. After becoming familiar
with the new tools, development of the specific applications
could start rapidly. All software development, and boot and
file service for the new DPCs is done on standard PCs un-
der RedHat Linux.

To integrate the new boards in the old environment, a lot
of details had to be solved. It took some time to become fa-

miliar with new technologies, like CORBA, and the Linux
environment. After passing the learning curve, progress
was rapid. Working software to study special aspects of
the new system could be developed fast. By now solutions
for all critical points could be demonstrated. Putting all
building blocks together, a first implementation in a test
environment could be completed. The new DPC compo-
nents are connected to the existing EC level, and the oper-
ations level interface offers old and new front-end installa-
tions uniformly.

The full functionality of the old system is not yet im-
plemented, and not all error conditions are handled prop-
erly. But the feasibility of the proposed renovation could
be demonstrated.

OUTLOOK

The base version of the newly build system will be suc-
cessively extended to full functionality. It has to be tested
extensively, with a final test by replacing an old DPC board
in the accelerator installation. When the system proves to
be stable, the new DPC boards will replace the old M68020
boards step by step in all 45 VME crates installed in the fa-
cility.

With the new DPC board spare parts will be available
again for the next years. A main design objective of the
new system is to encapsulate dependencies of hard- and
software. It will be therefore much easier than before to
introduce a then modern hardware when the actual DPC
board is no longer available.

An even more valuable result of the renovation is the
replacement of the network software. After using a propri-
etary protocol for a long time, the network will be based
on a widely used standard in the future. This is an impor-
tant step to overcome the limitation to OpenVMS for the
operation level software. Integrating Linux, and Windows,
and any other system for which CORBA is available will
be possible easily. A broad range of software can then be
made available for the operations of the accelerator.

On the front-end side, integrating other standards than
VME will be possible too. As long as the systems provide
the CORBA device access interface, they can be accessed
directly. Additionally, it will be much easier than today to
connect other control systems to the GSI system by bridges
or gateways.

REFERENCES

http://icalepcs2001.slac.stanford.edu/

http://icalepcs2001.slac.stanford.edu/

http://www.denx.de

Figure2: Object oriented device implementation.

[1] U. Krause, V. R.W. Schaa, “Re-Engineering of the

[2] L. Hechler, “Converting Equipment Control Software
from Pascal to C/C++”, ICALEPS�01, San Jose, Nov.

[3] Embedded Linux Development Kit, ELDK, Denx
Software Engineering,

2001,

2001,

GSI Control System”, ICALEPS�01, San Jose, Nov. ’

’

2005, Hayama, JapanProceedings of PCaPAC

