
EXPERIENCE WITH THE DATA ARCHIVER IN DOOCS

Harald Keller, Olaf Hensler, DESY Hamburg, Germany

ARCHITECTURE

At the Tesla Test Facility (TTF) more than 20,000 data
channels are permanently archived. Because of that huge
amount an important design goal of DOOCS was the
implementation of a device server as an independent
program that completely controls a number of devices and
provides the device data to the network and receives
messages from the clients. The implementation of the client
communication requires only a few calls - two different
calls to read data, one to send data and another to query the
actual list of devices and properties. The implementation of
the list query as hash search reduced the search time
compared to the previous sequential search significantly.

INTRODUCTION

In order to be independent from the Ethernet, a harddisk
is attached to every server station. This allows booting and
running individual servers without the network. Because of
the local harddisk, archiving history data can be done by
the server as well. This reduces the network traffic as well
and allows analyzing problems that happened during
network breakdown without loosing data. Therefore each
DOOCS server has its own archiver to store and retrieve
the filtered data in a history file with one ring buffer per
channel [fig. 1]. The archiver library provides three
different archive formats.

The TDS format stands for a structure consisting of a

Timestamp, a float Data value and a Status entry. This
archiver has two ring-buffers for every channel [fig. 2], one
fast memory buffer to see the noise of the signal, no
filtering is done except when the value is equal to the one

before. The second one is the buffer inside the archive
or history file for medium speed archiving. It exists in
two versions, without or with an internal index. Writes
to the ring buffer are filtered to reject noise from filling
up the storage file. The filter parameters are online
adjustable.

The threshold values in filter 1 can be an absolute
difference, a difference in mask bits or a difference in
percentage. With the last type one can also set a
minimal absolute threshold and a time limit after that a
value has to be stored in any case [table 2].

Both ring-buffers are running in parallel to each

other getting the same data values. To readout one of
the buffers, one has to provide the TTII data-type in the
get call. The first integer value switches between
memory and file buffer:

• 0: -> memory buffer at the beginning and then
file buffer for the remaining time

• 1: -> only file ring-buffer.

In this paper the focus is on the TDS archive format.

Figure 1: DOOCS client server structure.

Figure 2: Memory and file ring buffer.

2005, Hayama, JapanProceedings of PCaPAC

The second archive format is the comment string, which
is a 80 character string array. This is useful to provide
additional logging on a per device basis.

The third type of archiver stores complete spectra as one
entry in a ring buffer, which is essential a 2,048 item float
array. With this function one can archive scope pictures or
mass spectra, for instance. Up to 100 spectra can be stored
for one channel. One can retrieve a list of stored spectra in
a given time period in order to choose a spectrum from the
archiver file.

Furthermore every server program keeps a local data
base (config file) of its actual configuration state in order to
restart the system unchanged after a power failure. Since
this data base is a file on the local disk, in this case too a
server does not depend on the network.

 BY EXPERIENCE TO NEW FEATURES

Archive or hist files with a huge amount of device
histories in one single file led to very long startup times of
a DOOCS server. By the implementation of a separate
index file [fig. 1] the startup times could be reduced to
about 25% of the original times. From the remaining time
approximately 70% is used to read and interpret the
configuration file. Here surely further improvement could
be achieved.

During the display of very long ranges of history data it
could happen in the past that there where some timeouts in
the network traffic while retrieving the data from the hist
file. The network packages are limited to 2,000 records and
the search algorithm in the ring buffers had to be much
faster. By the implementation of a RBIIndex (ring buffer
internal index) [fig. 2, 3] the data retrieval time could be
reduced massively. The start position for the read operation
is quickly found by the help of the index and for one
network package of 2,000 records no more than 4 logical
parts of a ring buffer have to be read.

The size of a RBIIndex depends on the ring buffer size. It
is calculated once during the creation. A hist file consists of

• one mainheader containing the file type version,
device count and the byte order (big / small
endian) to ensure a correct use on the compatible
computer system (PC or Sun)

• one or more ring buffers which consist of
o RBIIndex (if it is version 1)
o History data entries

The problems that appeared in the course of time

during the handling of hist files led to the idea better to
have more different hist files with less ring buffers
instead of one big hist file with a lot of ring buffers.
For example, it is much more difficult to delete one or
more ring buffers and you have to keep others if there
is a big hist file with a huge amount of devices.
Performance tests even showed an advantage of this
architecture, and the previously implemented separate
index file is no longer needed.

We developed the utility histOne2n that separates a
big hist file with a lot of ring buffers or devices into
many different smaller hist files (“one to n” files) by
taking the location names to create the new hist file
names automatically [fig. 4]. The utility also makes it
possible to increase the size of the ring buffers during
the copy.

In the last year server programmers used this utility
to split their hist files. The newly created smaller files
automatically obtain ring buffers with a RBIIndex.
The statistical overview about the usage of all ring
buffers [fig. 5] shows that the main part of the ring
buffers is filled up to equal or less than 10%. About a
third is filled up to equal or less than 100%. In these

Figure 3: Data retrieval by the internal index.

Figure 4: histOne2n utility.

2005, Hayama, JapanProceedings of PCaPAC

cases it is the question whether the ring buffer length is big
enough to keep enough data from the very past.

But as one can see in figure 6 too many ring buffers are

defined much too small. A size of less than 10,000 records
does not seem to be reasonable as known from experience.
The existing smaller ring buffers might remain from server
test runs. After testing the programmers sometimes forget
to change the size.

A History Tool (xhisttool) for maintaining history data

and hist files [fig. 7] was developed. This tool allows
displaying and modifying the data of an archiver. It is used
for

• debugging and error correction
• for statistical investigation
• increasing ring buffers
• deactivating ring buffers by renaming them to

“UNUSEDx” where x is a digit to prevent from
using a name twice what is forbidden

The utility has the following functions:

Devices Display a list of all devices in a hist file.
Here you select one or several devices
you want to handle.

rename Rename of one single device. This
function prevents from double use of
names which would mean to have a
‘dead’ unused ring buffer as happened
in the past.

examine Examine all ring buffers of the hist
file. You get a good overview of

- the structure of a hist file
- the size and the usage of the

ring buffers
- possible chronological errors

Raw Hist List information about a file, the ring
buffer (from the header), some statistics
and the contents of the ring buffer data.
They are in a physical and not in a
chronological order. During reading
this order is inspected and possible
errors will be indicated. [fig. 8]

Repair
Line

Manual reparation of the values of a
single entry

Repair
Area

Manual reparation of the values of a
range of entries

Repair RB Automatic reparation of a complete
ring buffer

change Copy the complete hist file to a
NEWLENGTH file. Xhisttool
increases the ring buffer lengths of all
previously selected devices. The other
not selected devices keep their original
ring buffer lengths. Ring buffers with a
device name “UNUSEDx” are not
copied.

Table 1: xhisttool functions

Figure 5: Ring buffer usage.

Figure 6: Ring buffer lengths.

Figure 7: xhisttool.

2005, Hayama, JapanProceedings of PCaPAC

A part of the functionality used in the xhisttool GUI can

be used also as a line command in the doocshisttool.
Furthermore it is a good tool if you want to move a hist file
from a Sun to a Linux system or vice versa. Because of the
different byte orders of the different computer systems
(little and big endian) the hist files are temporarily
converted into ASCII files.

The script histstat.csh delivers statistical data of all hist
files of all servers based on the listing of the examine
function and prepares them for Excel use.

FUTURE PROSPECT AND CONCLUSION
Because data get overwritten when a ring buffer is full, it

could be useful in some cases to have a third buffer for
long time archiving [fig. 9]. First we have to decide what
kind of compression and filtering we want to use for this
feature. - On the other hand there is a big potential by
selecting an appropriate size for a ring buffer. Too many
ring buffers are defined too small. About 20% of them are
under the suggested minimum size of 10,000 and only 1%
uses the larger sizes of 500,000 or 1,000,000 entries.

The idea is to keep the existing ring buffer files, filter
(Filter 2) and transfer the data entries that would be deleted
to one or more separate sequential files. These long time
archive files should have their own index for faster data
retrieval. A supplementary overview file, that is
automatically written or can be separately created on
demand by special filtering (Filter 3), should offer an easier
and faster access to the wanted data.

Furthermore there is a need to set Filter 1 [fig. 2, 9]

automatically. At the moment it gets default values
(50% difference – IFFF = 0 0.5 0 0) during the first
start of a server program. Of course these values are
not ideal for every type of channel. But as these
parameters are not changed by the users in general, an
intelligent automatic filter setting could develop more
reasonable values.

Filtering is controlled by the IFFF (int, float, float,
float) structure. The idea is to begin at the first startup
with an automatic filter (I = -1) which investigates all
unfiltered data of the memory ring buffer. When this
buffer is filled up an appropriate filter is set and will be
kept (I >= 0) until it is a manually changed.

I (filter type) F (value) F (value) F (value)

-1 automatic
0 percentage difference min diff time limit
1 absolute difference
2 mask mask bits

Table 2: Archive filters

Figure 8: Listing by Raw Data function.

Figure 9: Long time archiver.

2005, Hayama, JapanProceedings of PCaPAC

