
DEVELOPMENT OF AN INTELLIGENT MOTOR CONTROL UNIT WITH
ETHERNET CONNECTIVITY

T. Masuda*, T. Fukui, R. Tanaka, K. Yanagida
SPring-8, Hyogo 679-5198, Japan

Abstract
 We developed a new motor control unit (MCU) with

network connectivity, and installed the MCUs for the
SPring-8 linac pulse motor control by reengineering VME
systems. We still hold VMEbus system, but we replaced
VME motor control boards by the MCUs to provide local
controllability for machine experts without spoiling
processing speed. We adopted a PC architecture industrial
controller ND-MCU, which has 200MHz SH-4 CPU and
three PCI slots, and commercial-available PCI motor
control boards were installed to the slots.

 Routine operation sequences of a pulse motor such as
initialization, extraction, insertion and movement are
defined and stored as embedded procedures in the MCU.
Because the sequences are performed as concurrent tasks
for each axis of a motor, we can operate a maximum of
twelve axes at the same time. The MCU holds conversion
equations between pulse counts and physical values to
achieve motor operations by using physical values only.
Since the embedded processes run on the MCU, the MCU
can perform the same operations both to remote control
via network and to local control by a touch panel.

 We report the new motor control unit by focusing on
its functions and advantages of the operations.

INTRODUCTION
The SPring-8 1-GeV linac works as an injector not only

for an 8-GeV SPring-8 storage ring but also for a 1.5-GeV
NewSUBARU storage ring [1]. Since May 2004, SPring-
8 started top-up operation in which electron beams are
continuously injected into the SPring-8 storage ring to
keep stored beam current approximately constant [2]. And
since September 2004, SPring-8 started the simultaneous
top-up injections to two storage rings of SPring-8 and
NewSUBARU. So the injector linac was highly required
to have stability and reliability.

Toward the realization of the top-up operation, we
needed to re-engineer the linac control system hardware
to obtain enough reliability, stability and availability [3].
In the old linac control system, VME computers were
placed close to the linac equipment such as modulators
and magnet power supplies, and direct input/output (I/O)
boards were used to control the linac equipment. Total 25
VME computers were distributed along the length of the
linac.

VME pulse-motor control (PMC) boards were used in
the old control system to control many pulse-motor
drivers to operate phase shifters, attenuators, beam slits,
and wire grid monitors (WGMs). The PMC boards
brought us fast controllability, but on the other hand local

controllability of the motor drivers was sacrificed at
maintenance time. Local operations of the motor drivers
were performed either by attaching a serial terminal to the
VME CPU, or using a network-connected terminal. When
the control system was updated, we considered achieving
the local controllability of the motor controllers. We
developed new network connectable motor control unit,
MCU.

MOTOR CONTROL UNIT
The MCU was developed based on a PC-based

industrial controller ND-MCU [4]. The MCU is a 4U
height, 19”-rack mountable and diskless system. The
controller has a CPU of 200MHz SH-4 (SH7751R) [5], a
10Base-T/100Base-Tx Ethernet interface, and three PCI
slots. A real-time operating system (OS) NORTi [6],
which follows the µiTRON4.0 [7] specification, is used as
the OS of SH-4. For a local operation, the MCU has a 4”
LCD touch panel on the front panel. A picture of the
MCU is shown in Fig. 1.

Figure 1: A picture of the MCU.

For a choice of a PCI motor control board, we took
account of function compatibility and hardware interface
compatibility with the VME PMC board. We chose a PCI-
7414V PCI board [8] from some commercial available
products as a result of control test of some kinds of motor
drivers used in the linac. The PCI-7414V independently
drives four axes of pulse motors by using pulse outputs
that are electrically isolated with GMR (Giant Magneto
Resistance) isolator. As the results, the MCU can
independently control a maximum of twelve axes. The
main specification of the PCI-7414V is listed in Table 1.

We designed the MCU to satisfy good local
controllability and remote operation, and to achieve the
following features. First, the MCU can perform
complicated fixed-sequences such as initialization,
extraction and movement, and the sequences can be

__

*masuda@spring8.or.jp

2005, Hayama, JapanProceedings of PCaPAC

modified and downloaded via a network, if necessary.
Secondly, the MCU can provide intuitive operation for the
local and remote control by using physical value. Thirdly,
the MCU can provide seamless and equivalent operation
between the local and remote control.

Table 1: Specifications of a PCI-7414V motor control
board.

Number
of axes

4 (individual control available)

Pulse
output

CW/CCW or OUT/DIR output mode
Max. 6.5Mpps output pulse rate
Output counts: -134217728 ~ 134217727
GMR isolation
+5V DC output (differential line driver)

Encoder
input

Incremental encoder inputs (A/B/Z-phases)
Max. 1MHz input pulse rate
Counter length: 28bits
High-speed optical isolation
+5V DC input

Other
signal
output

4-bit general purpose outputs
+5V ~ +48V DC output
Max. 100mA output current

Other
signal
input

+/- EL and the ORG signal inputs available
12-bit general purpose inputs
Optical isolation
+5V~+48V DC input

Fixed Sequences Execution
The MCU executes complicated fixed-sequences

according to equipment control instructions. Table 2
shows the currently embedded sequences in the MCU.

Table 2: Developed fixed sequences embedded in the
MCU

Sequence Action

initialize
Determine the origin of an axis with a low
speed drive

extract
Drive a pulse motor at a low speed to the
extraction limit of an axis.

insert
Drive a pulse motor at a low speed to the
insertion limit of an axis.

nominal
Return to the origin of an axis with a
trapezoid drive.

move to
Move to the specified position of an axis
with a trapezoid drive.

The MCU has execution buttons for the local operation

corresponding to the fixed sequences in an operation
panel as shown in Fig. 2. For example, when we need to
determine the origin of the motor driver, we touch the init
button on the panel. Then, the MCU starts the embedded
initialization sequence. Thus, we can execute the
complicated motor control by using the fixed sequences
without any difficulties even for the local operations.

Figure 2: An operation panel on the MCU LCD touch
panel.

We designed the MCU to work as a socket server for
the remote control. We can remotely instruct the MCU to
execute a fixed sequence by sending a corresponding
command via a network. The feature simplifies remote
operations, and reduces the number of network
communications with the MCU. Consequently, the MCU
provides fast network controllability.

The MCU concurrently executes the fixed sequence for
each axis on the NORTi OS, so that it can execute a
maximum of 12 tasks concurrently for the local and
remote operations. This feature reduces the total
throughput of the sequence executions.

Intuitive Operation by Using Physical Values
In order to provide intuitive operation by using physical

value, the MCU convert pulse counts and encoder counts
into physical values, and vice versa by using embedded
conversion equations. We can specify and download up to
ten equations with ten arbitrary coefficients into the MCU
in advance. We need to set three equations for each axis
from the embedded equations via a network. The three
equations are a conversion of pulse counts into physical
values, a conversion of encoder counts into physical
values, and a conversion of physical values into pulse-
counts. At the same time, we have to specify the
coefficients for each conversion equation via network.

The conversion equations are useful to set the
destination and read the current position by physical value
for local and remote controls. This feature greatly
improves the local operability, especially in the case of a
complicated conversion equation.

Seamless and Equivalent Operability
Since the MCU holds both output pulse counts and

encoder counts on the PCI-7414V PMC boards, we can
switch between the local and the remote operations
without losing the current positions. This feature of the
MCU brings us seamless operability between the local
and remote control. The local operations and the remote
operations are completely equivalent.

Local Operation
Two operation modes are prepared for the local control

of the MCU. One is a setup mode of the MCU and the
other is a drive mode for each axis.

In the setup mode, we can set up operation conditions
of the MCU such as IP address and subnet mask of a
network interface, output pulse rates, and logic level of

2005, Hayama, JapanProceedings of PCaPAC

end-limit signals. Except for the network interface, we
can also set up them from the remote.

In the drive mode, the MCU provides jog control for
the local operation in addition to the embedded sequences
as shown in Table 2. We can drive each axis by using fast
and slow control buttons in a jog control panel.

Since we need to monitor the drive status of each axis
during the execution of the embedded sequence, we
prepare a status panel to display output pulse counts,
encoder counts, limit switches status, result of
initialization and so on as shown in Fig. 3.

Figure 3: A status panel on the MCU LCD touch panel.

Remote Operation
We designed socket interfaces which define command

formats for the network control using TCP protocol. A
format of action commands to the MCU is written as
follows:

 cmd:#board:#axis arg1 arg2 … ,
where,
 cmd : command,
 #board : board number (A, B, C),
 #axis : axis mumber (1, 2, 3, 4),
 arg1, arg2…: arguments of the command.

Table 3: The main commands of the MCU socket
interfaces.

Command Function

move_to
Move to the specified physical
position. Execute move to sequence

exec
Execute the fixed sequence of
initialize, insert, extract and nominal.

stop
Stop the current executing sequence
and pulse output.

phy_conv
Choose a conversion equation of pulse
counts into physical values.

phy_conv?
Get a current conversion equation of
physical values into pulse counts.

encphy_conv
Choose a conversion equation of
encoder counts into physical values.

pulse_conv
Choose a conversion equation of
physical values into pulse counts.

position? Get the current positions and status.

param_set
Set operation parameters of an initial
speed, a drift speed, an acceleration
time and a deceleration time.

save
Save current operation parameters in a
flash ROM.

In query commands to the MCU, a question mark
accompanies cmd is used as follows:

 cmd?:#board:#axis arg1 arg2 … .
The MCU returns the result (ok or fail) to the client
process, which sent a control command. The main
commands are listed in Table 3.

The commands are categorized into three groups
according to their functions. One is a group of the
commands for the fixed sequence embedded in the MCU
like initialize. Second is a group of the commands for
choosing conversion equations between the pulse counts
and physical values such as phy_conv and pulse_conv
commands. And third is a group of the other commands
such as getting a current status of the MCU, setting an
output pulse rate and so on such as position? and save
commands.

The MCU supports a maximum of five TCP
connections for client processes. Typical round trip time
between a socket client process and the MCU to get a
current status via fast Ethernet is about 90msec, which is
almost consumed inside the MCU.

APPLICATION TO THE LINAC
CONTROL SYSTEM

We newly installed twenty MCUs at the upgrade time
of the linac control system [3]. In order to keep
connectivity with all the kinds of present motor drivers in
the linac, two kinds of interface-boxes were newly
prepared between the motor drivers and the PCI-7414V
boards. At the beginning, we worked to fix and optimize
the MCU software, but now the MCU system is
substantially reliable and stable.

Since the MCU holds the current positions of each axis,
we can continue the MCU operations without the
initialization even after operation client computers were
down or rebooted.

When a trouble happened to a motor driver, machine
experts investigated the motor driver by the local control
of the MCU. In that case, the embedded sequences were
very helpful and convenient because we were able to
instruct the MCU to execute the sequences without any
special knowledge about differences between motor
drivers such as gear ratio. The MCUs are instructed to
keep the differences as the given parameters of the
execution commands in advance.

SUMMARY
We have succeeded in developing the intelligent MCU

to achieve good local controllability without spoiling
remote controllability. The MCUs work well with
substantial reliability and stability.

In order to achieve good local controllability, we
designed the MCU to provide the capabilities of fixed
sequences execution and intuitive operation by using
physical values. These features actually bring us simple
and intuitive local controllability requiring no special
knowledge about motor drivers. Also the features succeed
in simplifying remote operations. We can reduce a

2005, Hayama, JapanProceedings of PCaPAC

number of communications with the MCU by using the
embedded sequences in the MCU. Concurrent execution
of the fixed sequences reduces total throughput of the
remote operations.

Since the MCU holds current positions in it, we
succeed in achieving seamless and equivalent operations
between the local control and the remote control. This
feature of the MCU enables us to operate the linac
continuously even though client computers are down or
rebooted. Consequently, the MCU greatly contributes to
enhancing availability of the linac operation together with
its reliability and stability.

The MCU has enough flexibility and expandability due
to its adaptive feature of PC architecture and embedded
software. The MCU PCI boards are not limited to the
pulse-motor control boards only; rather we can build
various kinds of controllers by combination of other kinds
of PCI boards.

REFERENCES
[1] A. Ando et al., “Isochronous storage ring of the

NewSUBARU project”, J. Synchrotron Rad. 5 (1998)
pp.342-344.

[2] H. Tanaka et al., “Top-up Operation at SPring-8 –
Towards Maximizing the Potential of a 3r Generation
Light Source”, Proc. of EPAC’04, Lucerne,
Switzerland, 2004, p. 222.

[3] T. Masuda et al., “Upgrade of the SPring-8 Linac
Control by Re-engineering the VME Systems for
Maxmizing Availability”, Proc. of ICALEPCS’03,
Gyeongju, Korea, 2003, p.295.

[4] Nichizou Electronic & Control Corp.,
http://www.ndssf.co.jp/

[5] Renesas Technology Corp., http://www.renesas.com/
[6] MiSPO Co., Ltd., http://www.mispo.co.jp/ (Japanese

only)
[7] ITRON project, http://www.ertl.jp/ITRON/home-

e.html/
[8] Interface Corp., http://www.interface.co.jp

2005, Hayama, JapanProceedings of PCaPAC

