
ACCELERATOR MODELING ENGINE FOR CONTROL SYSTEMS*

H. Nishimura1, C. A. Timossi2, M. E. Urashka3, LBNL, Berkeley, CA 94720, U.S.A.
T. Kosuge4, K. Nigorikawa5, KEK, Tsukuba, Ibaraki 305-0801, Japan

Abstract
An accelerator modeling engine is an application program
interface (API) designed to be compatible with control
systems and covers the field of accelerator modeling and
simulation by behaving as virtual accelerators. We have
created by making a DLL layer on top of the existing C++
class library called Goemon. A compatibility with
COACK, STARS and EPICS is demonstrated by
examples.

SYMMETRY OF CONTROL SYSTEMS
Most of the traditional control systems distinguish

console programs from their target devices (Fig.1A).
Therefore, it is not trivial to introduce a physics program
as a virtual device as the model must behave like a device
while running as programs. On the other hand,
COACK[1] and STARS[2] are symmetric in treating
console programs and devices at the same level(Fig. 1B).
As a result, they can easily accept physics programs as
virtual devices. One of these virtual devices can be an
accelerator modeling engine that emulates a target
accelerator.

A symmetric architecture can be also useful to develop
a virtual machine itself as it provides a hub to combine
multiple programs with or without the connection to the
control system.

MODELING ENGINE

Roles
Accelerator controls are becoming more and more

sensitive to various parameter changes and are required to
be extremely accurate. It is true that the sensitivity

(response) matrices cover a wide range of the operations
without using a model where linearity is assumed.
However, it assumes a circulating beam behaving well
enough to measure the matrices. Otherwise, we must use a
model to operate the machine effectively. In such cases,
the availability of virtual accelerators becomes critical for
precise machine controls. An example is a commissioning
of a new accelerator or a new lattice with severe boundary
conditions where a circulating beam may not be expected.

Once a reasonable circulating beam is established, a
virtual machine cooperates with the sensitivity matrices to
characterize the accelerator optics.

Definition
A modeling engine is an API (application program

interface) of an accelerator physics modeling and
simulation library tailored for the use in control systems.
The templates of its client programs should be included to
indicate its proper usage.

Requirements
A modeling engine is for the real machine controls.

Therefore, it would be reasonable to require the following
items.
• Simple to understand, develop and maintain.
• Compatibility with the control system.
• Fast execution speed.

Most of the time, a modeling engine will be built on top
of an existing program or a library. In such cases, it is
important to design the API to hide the complexity of the
original layer. It will also help to make the link to the
control system simple. Fast execution speed is always
crucial not to be a bottleneck of the control system.

Compatibility with the control system primarily means
two items:
• Connectivity.
• Thread safety.

Connectivity depends on the control system. It may be a
matter of simple static link, or of a modern infrastructure
of a distributed system. In this paper, as we focus on
Windows as the platform, connectivity means a local
connection to the programs that are already a part of the
control system.

Thread safety is required because the control system is
always multitasking and/or multithreading. Thread safety
is also required to be able to instantiate multiple objects of
the model, which we discuss later.

However, these two issues may not be trivial in case of
accelerator physics programs. Most of them are not
libraries but stand alone programs. We cannot expect

*Work supported by the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098. 1. H_Nishimura@lbl.gov.
2. CATismossi@lbl.gov. 3. MEUrashka@lbl.gov.
4. Takashi.kosuge@kek.jp, 5.kazuyuki.nigorikawa@kek.jp

Figure 1: Symmetry of the Control System Architecture.

2005, Hayama, JapanProceedings of PCaPAC

these programs to have any multitasking capabilities. For
example, if global variables are used, it will probably not
be thread safe.

Example
We have created a modeling engine for the ALS storage

ring by using an existing C++ class customized for the
ring. This class is derived from a generic ring class of the
Goemon C++ library [3].

. Here are the major functions of Goemon.
• Linear optics calculations by using the standard

matrix formalism.
• Advanced nonlinear optics calculations by using the

full 6-dimensional routines.
• Orbit calculations and adjustments.
• Various parameter fittings.
• Simulations of realistic errors.

Flexibility and performance have been more important
than simplicity in the development of Goemon. It has a
range of analysis routines that are not usually required for
a practical modeling. We chose a subset of member
functions of the ALS storage ring class, and
parameterized them to reduce the number of public
routines. The result is about 50 routines that are to be
sufficient in a practical modeling.

Design issues are:
• Enable multiple instances of the virtual machines.
• C API to hide the C++ hierarchy.
• Primitive types for parameters.
• Implement as dynamic link library (DLL) in which

virtual machines are allocated.

The capability of multiple instances is a natural
consequence of using a class for as accelerator. It makes
modeling efficient and modularized. For example, you
can create a virtual machine with an ideal lattice as a
reference, and work on the one with realistic lattice. It is
also possible to prepare virtual machines for multiple
rings and beam lines and use them in parallel.

C++ classes are not easily usable from other languages.
Using a C API is inevitable to make the library easily
accessible from various languages. To make the
parameter passing simple, we use only primitive types for
API.

On Windows, we use DLL. We allocate the objects in
the DLL memory space, not in the client side. Then, the
DLL gives routines to operate these objects by hiding the
complex details.

The result is a DLL version of Goemon for the ALS
storage ring exporting C API to cover the following:
• Manipulate all the magnet settings (58 quads, 4

bends, 2 sextupoles, 24 skew quads, 164 steerings)
• Manipulate various magnet errors, including field

errors, misalignments and tilts.
• Optics and orbit calculations including fittings.
• BPM emulations (96 BPMs)
• Various particle tracking routines.

Client Programs
The DLL described above is language independent on

Windows. Any language that supports DLL can be used
in client programs. However, to make this process
efficient, we have created import libraries and its wrapper
classes to reconstruct a proxy class of the ring in several
client languages.

Fig.2 shows the comparison of normal use of the C++
library Goemon directly in C++ (A) and through the DLL
by various languages using the proxy class in each
language. An example of Visual Basic 6.0 (VB6) is
described in the next chapter.

Example of Using the C API
Here is an example of a C program using the C API in

the DLL. The naming convention of the routines of
Goemon is same as that of Tracy/Tracy2[4].

int SR1=SRCREATE(1);// (1)
GETTWISS(SR1,1);//(2)
FITTUNE(SR1, 14.25, 9.20);//(3)
SETQ(SR1, 2,7,1,GETQ(SR1,2,7,1)*1.02);//(4)
SETSTEER(SR1,0,27,0.001);//(5)
GETCOD(0.0);//(6)
double x=GETBPM(SR1,0,48);//(7)

This short example does the following:

(1) Create a virtual machine indexed as 1.
(2) Calculate linear optics (beta and dispersion)
(3) Fit betatron tunes to (14.25, 9.20).
(4) Increase the strength of SR07C QD2 by 2%.
(5) Set the 27th horizontal steering to kick 1 mrad.
(6) Calculate the COD for an on-energy particle.
(7) Read the horizontal orbit at the 48th BPM.

Example of Using the C++ Wrapper
This example becomes with the use of a proxy class as:

ALSRing *SR1=new ALSRing();
SR1->getTwiss(1);
SR1->fetTune(14.25, 9.20);
SR1->setQ(2,7,1,SR1->getQ(2,7,1)*1.02);
SR1->setSteer(0,27,0.001);
SR1->getCOD(0.0);

Figure 2: Goemon and Application Programs.

double x=SR1->getBPM(0.48);

2005, Hayama, JapanProceedings of PCaPAC

The conversions between the engineering units and the
physical units are not in the engine but stay outside as
they are always required regardless of the availability of
the virtual machines.

We have implemented a proxy class in various
compilers including .NET languages. Java is also covered
by using the Java Native Interface (JNI). An example in
Visual Basic 6.0 is shown in the next chapter.

Example of Using the DLL in Python
Matlab has been demonstrated the usefulness of an

interactive environment[5]. In case of Goemon in DLL,
something similar can be realized by using Python. There
are several modules available that allow Python scripts to
make function calls to C language DLLs. The ctypes
module[6] makes this task extremely simple and provide
for the ability to program interactively. Here is a part of
the example in Python:

from ctypes import *
import types
gd = CDLL("gemCdll.dll")
SR1 = gd.SRCREATE(1)
gd.GETTWISS(SR1,1)
nux = c_double(14.25)
nuy = c_double.(9.20)
gd.FITTUNE(SR1, nux, nuy)
gd.GETQ.restype = c_double
c = c_double(gd.GETQ(SR1,2,7,1) * 1.02)
gd.SETQ(SR1,2,7,1, c)

One important note though, when using this library it is
important to keep in mind one must specify the return
types to expect from a function call. Also, when passing
values as parameters one must be careful to match the
type if it is something other than an integer or a string. So
if a function expects a C double, it is necessary to cast it
as a ctypes c_double. However, Python is object-oriented
therefore these issues can be hidden by introducing a
wrapper class, as the following example shows.

class SRRing:
 SR = 0
 def FitTune(self,Nux,Nuy):
 goemonDLL.FITTUNE(self.SR,
 c_double(Nux),c_double(Nuy))
 def GetQ(self,typ,sec,n):
 goemonDLL.GETQ.restype = c_double
 return goemonDLL.
 GETQ(self.SR,typ,sec,n)
 # Lines omitted here after

Let us assume that a Python script file GemCDLL.py
contains the class partially listed above. Then, we can
access the DLL in an interactive mode. The example
below shows how two instances of the virtual machines
can be used in an interactive Python environment.

 >>> import GemCDLL
 >>> SR1=GemCDLL.SRRing(1)
 >>> SR2=GemCDLL.SRRing(2)
 >>> SR1.GetTwiss(0)
 >>> SR2.GetTwiss(0)
 >>> SR1.FitTune(14.25,8.20)
 >>> SR2.FitTune(14.25,9.20)
 >>> print SR1.GetQ(1,1,2)
 2.20136629155
 >>> print SR2.GetQ(1,1,2)
 2.22459073967
 >>>

Modeling Engine in an ActiveX control
Once the C API is established, it is straightforward to

create an ActiveX control containing it. We have created
an ActiveX control by using the active template library
(ATL). This will be useful when creating graphical
applications in various tools. Fig.3 shows the ActiveX
control on a LabView block diagram showing 15 of total
54 methods.

MODELING IN CONTROL SYSTEMS

COACK
COACK is a framework for a control system based on

the Windows architecture. It has a symmetric architecture;
therefore it should be simple to integrate a modeling
engine. Although COACK is a system for VB6 programs,
we have two options: one to use the DLL version, or the
ActiveX controls. Here we use the first option.

VB6 is not objected-oriented but object-based, therefore
we can write a wrapper class in VB6. A class in VB6
corresponds to a separate class module. This is also the

Figure 3: ActiveX Control on LabView.

2005, Hayama, JapanProceedings of PCaPAC

place where we can import the DLL routines. Here is how
the example was rewritten in VB6 by using the class.

 Dim SR1 As New ALSSRing
 Call SR1.Init(1)
 Call SR1.GETTWISS(0)
 Call SR1.FITTUNE(14.25, 9.2)
 Call SR1.SETQ(2,7,1,SR1.GETQ(2,7,1*1.02))
 Call SR1.SETSTEER(0, 27, 0.001)
 Call SR1.GETCOD(0)
 x=Call SR.GETBPM(0, 48)

A real connection to COACK requires links between
the DLL routines and the event handling routines
associated with the COACK XML data describing the
device class of the target accelerator.

STARS
STARS is a simple and lightweight system written Perl

and uses TCP/IP therefore it is cross-platform by its
nature. It also uses the symmetric architecture and comes
with the bridge to COACK. As it does not require any
special set up of the environment except the availability of
Perl and TCP/IP, it works very efficiently for small
systems including the development of the modeling
engine itself without the real connection to the control
system.

Both STARS servers and clients are in Perl. We must
use the STARS C API to link to external routines. We
created a C++ class (Stars) on top of the C API and used it
to connect the modeling engine. In Fig.4, "interface to
STARS" is this layer. It is completely hidden from the
application programs.

Goemon C++ Library

DLL Import Library

C API in DLL

ALSSRing Class

STARS

Interface to STARS

Goemon C++ Library

COACK

C API in DLL

ALSSRing Class

Application Program

ALSSRing Wrapper Class

Interface to STARS

C API in DLL Proxy

VM Server

VM Client

EPICS
EPICS[7] is the new control system being to which the

ALS control system is migrating. Most of the interactive
GUI programs are on the Windows consoles, while
automated process control programs are in Matlab[5]

running primarily on Unix/Linux workstations. Here we
focus on the Windows environment.

EPICS has a traditional architecture that is not
symmetric (Fig.1A). However, it is made simple to create
a virtual machine on Windows by using an ActiveX
component (SCAS)[8] supporting functions of a channel
access server. There is also an ActiveX component
(Scacom)[9] for the simple channel access clients. By
adding the server component to the program using the
DLL, we got a modeling engine compatible with EPICS.

CONCLUSION
It is important to prepare a modeling engine as a C API

to be compatible with control systems. In case of
developments on Windows, DLL is the adequate form of
the library with an option of ActiveX controls. Various
programming languages can be supported very efficiently
by providing import libraries. In using it in a control
system, a symmetric architecture of COACK and STARS
are very beneficial for modeling. In case of EPICS, two
ActiveX controls SCAcom and SCAS are crucial.

AKNOWLDEGEMENTS
We thank D. Robin and Alan Biocca at LBNL, and S.

Kurokawa at KEK for their encouragements.

REFERENCES (NOT COMPLETED)
[1] I. Abe, et al, PAC'00, Hamburg, October 2000.

SYSTEM WITH STARS",

 PCaPAC2002, Frascati, October 2002
[4] H. Nishimura, EPAC '88, 803,1989.

J. Bengtsson, E. Forest and H. Nishimura, "Tracy
Users Manual", unpublished.

[5] G. Portmann, this conference.
 J. Corbett, A. Terebilo, G. Portmann, IEEE PAC’03,

0-7803-7739-9, p2369, 2003
G. Portmann, J. Corbett, A. Terebilo, "An
Accelerator Control Middle Layer Using Matlab
Manual," to be published in IEEE PAC’05

[6] http://starship.python.net/crew/theller/ctypes/
[7] L.R.Dalesio, et al., ICALEPCS '93, Berlin, Germany,

1993.
http://www.aps.anl.gov/epics/

[8] C. Timossi, unpublished
[9] C. Timossi and H. Nishimura, IEEE PAC’97,

0-7803-4376-X/98, p805, 1998
http://www-controls.als.lbl.gov/epics_collaboration/
sca/win32

Figure 4: Virtual Machine and STARS.

[2] T. Kosuge, et al., "COACK MULTI-SERVER

[3] H. Nishimura, PAC'01, Chicago, July 2001, p.3066.

2005, Hayama, JapanProceedings of PCaPAC

