
FAULT IDENTIFICATION IN ACCELERATOR CONTROL

Philip Duval, Ursula Lauströer, Rüdiger Schmitz, DESY, Hamburg, Germany

Abstract
Accelerator control differs from, say, nuclear power

control in that the control parameters are frequently
changing and evolving and are often themselves under
study. Provisional control applications (written in haste)
are often used because they are urgently needed to study
an emerging problem. Double (triple?) redundancy is
infrequently applied to the control points and the control
system is often dependent on the Ethernet and is therefore
partly administered by the site's IT division. Accelerator
operators desire the same reliability found in nuclear
power control but are nonetheless often confronted with
control problems. For instance, communication with a
front end computer (FEC) might suddenly suffer frequent
timeouts. Is it a network problem, a software problem, a
hardware problem, or another kind of front-end or
synchronization problem? Looking in the wrong place is
likely to increase frustration and delay operation.

In this paper we report on variable tools and techniques
for identifying control system faults at their different
levels (site infrastructure, control infrastructure,
applications, incomplete operator training) and we discuss
various remedies for correcting them and strategies for
avoiding them.

INTRODUCTION
Our experience with faults arises from the control

systems for the accelerator chain at DESY [1]. The main
characteristics of these systems in this context are listed in
brief below:

• Multiple operating systems in use on front-end
computers but exclusive usage of Microsoft
Windows (NT XP) at the operator consoles. Table
1 gives a summary of the operating systems
involved and their contribution to the total number
of computers in the control system

• Integration of two control-system architectures:
one based on TINE [2] the other mainly using
Novell’s IPX broadcasts [1]

• There are several hundred applications, mainly
written in Visual Basic (3.0 and 6.0) but C and
C++ are used as well.

Table 1: Usage of Operating systems

Operating system Number of
computers

Windows XP 64

Windows NT 197

Windows 95 10

Windows 3.11 18

DOS 14

Linux 63

Solaris 3

HP UX 5

VxWorks 15

LynxOS 1

Total 390

FAULTS AND FAULT HANDLING
A few points concerning control system faults should

be noted here. First, faults appear with different signatures
and are at first glance statistically distributed in time.
Second, different fault-signatures may in fact have a
common cause. And third, from the control-room-
operator’s point of view a “fault” is deemed to have
occurred whenever the machine cannot be operated
normally.

 Most faults originate in application programs written
by the controls people.. All too often, changes of a
“running system” have to be urgently made in order to
rectify an emerging problem in the accelerator hardware,
or to address the dire needs of the operators. Software
faults of this nature are bound to happen and don’t
necessarily reflect “shoddy” programming, but are rather
due to the effects of unforeseen degrees of freedom in the
enormous “phase-space” of accelerator control parameters.
To a large extent, standardized automated testing
mechanisms, which might catch some of these faults
‘waiting to happen’, are missing as is an acceptable
amount of test-time at the accelerator facility itself.

Detection
The principal fault ‘detectors’ are the operators. If a

program shows a malfunction they register a fault, one
way or another, either by inserting a logbook entry or
email or verbal notification to those responsible.

 From the early days of PCs controls in the DESY
accelerator chain where 16-bit Windows was in vogue to
the present, where Windows NT/XP is in common use,
the operators have obligingly recorded most manners of
server faults in a special logbook. This logbook is
primarily devoted to the Windows servers in operation
within the IPX-based control system of the pre-
accelerator chain, and therefore only infrequently records
faults pertaining to other servers. The errors recorded
typically include but are not limited to

• Application Runtime errors
• Access faults.
• Operating System errors.
• Network errors

2005, Hayama, JapanProceedings of PCaPAC

• Disk errors
• Hardware errors

Even though not all faults are guaranteed to have been

documented, the number of log entries gives a rough
indication where action is required. Table 2 shows that the
number of faults per day is nearly independent of the
machine’s schedule (roughly constant across shutdown
periods) and of a server’s operating systems, to the extent
the log entries concern only Windows 3.11, NT, and XP
servers. However the results shown below are
nevertheless instructive.

Table 2: Faults reported by operators over 116 Device-
Server-PCs running Windows 3.11/NT/ XP

Year Number of faults Faults/Day

2001 227 0.63

2002 190 0.52

2003 145 0.40

2004 188 0.52

In order to automate fault-detection we have installed

several systematic procedures, some of which are still in
the commissioning phase. Still missing, for instance is an
acceptable notification mechanism, as is a central control-
system fault help-desk.

The following control-system services are checked
automatically. These checks help to reconstruct the
history of fault propagation and at the moment provide a
tool to manually detect faults and ascertain their causes:

• Connectivity to Device Server: An IP checker
regularly pings all addresses in all control-subnets
(18) and provides information on each IP-address,
such as: ping reply ok, date ping switched to no
reply, date switched to reply, days not seen, and so
on. Likewise, an IPX checker checks on the
availability of each of the 118 IPX device-server-
PCs and generates list of downtimes.

• Dynamic-Mac-Address-Tables of our controls-
network-switches read out and conversion into
hostnames and IP-Addresses.

• Fileserver Check Tool tests the availability of
important control system file servers.

• Application Watchdogs provide an automatic
restart of control-servers-applications and logging
of application state changes.

• Alarm System: shows current or archived alarms
detected in server-processes or central alarm
servers.

• Statistics System: regularly acquires statistics
counters from device servers, such as busy time,
restarts, number of timeouts, and so on.

Identification
Typically, when a fault is detected it is part of a fault

“tree,” where finding all the causes which lead to the
“symptom” require good logging and archive systems. To
this end, we also make use of several tools which are used
“after-the-fact”. These are listed below.

• Network-Overview pings the critical elements in
the controls network topology, thereby quickly
isolating the source of a network failure.

• Logfiles generated either by the control system
kernel or by the control system application are
usually very instructive in isolating a control
system fault. Most helpful is a central tool which
can scan all relevant log entries over a particular
time span. Logfiles generated by the operating
system (e.g. Windows Event-Log or syslog).

• Archives should contain not only machine
parameters but hardware settings. Archive viewers
should be able to correlate any entries stored either
locally at the device server or centrally.
Furthermore, post-mortem or “event-driven”
archives are indispensable when trying to find the
cause of a sudden beam loss. This generally
includes transient recorders and other sorts of
hardware triggered fast data acquisition systems.

• FEC-remote-control operating system
independent tool, to observe and control TINE-
processes.

• FEC-Statistic displays data from the statistics
system: CPU-Load, restarts, Network-Timeouts
etc.

The originally observed fault will leave its signature
within the corresponding log files and archives. This
signature servers as the fault’s identification.

Isolation
By “identifying” the fault, we have not necessarily

found its cause. “Whenever I do ‘A’ then ‘B’ happens”
might suggest that we avoid doing “A” if we don’t want
“B” to happen, but does not by itself explain why “B”
happened. This frequently requires further investigation
where we need to isolate the fault. In other words, What
subset of ‘A’ makes ‘B’ happen? Can I remove all
extraneous parameters from consideration? Can I generate
the fault in a simplified test environment?

Reproduction
If we have successfully isolated the fault, then we

should be able to reproduce it ad infinitum. More
importantly, we should now have a clear understanding of
its underlying causes and be able to repair it.

Classification
It should be clear that control system faults have to be

eliminated with all our best efforts. The loss of beam-time
due to such faults has to be reduced to a minimum.

From our experience over the last 8 years we can
categorize the causes of faults as follows:

2005, Hayama, JapanProceedings of PCaPAC

• Network-Problems: unrecognised slow increase of
network load with statistical peaks cause
unacceptable loss of datagrams, leading to faults in
our system which relies in IPX-datagrams.

• Computer Hardware, bad memory or disks of a
certain delivery caused a lot of work and trouble.

• Operating System Problem, the DLL-hell of
Windows makes it very difficult to distinguish
between application- or system-program error.
New DLLs distributed with e.g. security- or
program-updates are sometimes incompatible with
the controls applications DLLs.

• Application Program Error. Main area of problems
given by the unexpected degrees of freedom an
application programmer implicitly used coupled
with the ‘optimistic’ programming (failure to
check return codes) which frequently happens
when one is trying to work quickly under pressure.
Very often the set of values a program can deal
with is not selected precisely. That is often the case
with values read-out from the fieldbusses if the
illegal values are not masked out.

• Changing operating conditions for the machines.
This can result in unforeseen behaviour of
application programs and may cause harm to the
machine.

• Virus or worm attacks: Some of our consoles were
attacked by the sasser worm in May 2004, where
the virus reached the PCs earlier than the virus-
signatures-updates for the installed and active
virus-scanner.

• Database inconsistencies. The name resolution
service for control-processes is essential und a
corrupt or incorrect entry may lead to strange
behaviour. Even DNS (IP Domain Name Service)
or WINS (Windows Name Service) can cause
problems in the control system.

The main contribution to systems faults comes from
application programs, from one of several avenues
mentioned above. Standardized automated testing
mechanisms are currently being commissioned, which
should help alleviate this problem.

Archiving
We now archive faults and the measure against in a

software electronic logbook, originally developed to
document the TTF operation [3]. By so doing, we are able
to track a system fault from the point of its inception to
(hopefully) its elimination.

STRATEGY TO AVOID FAULTS
Good fault-statistics should lead to preventive measures

to avoid faults. We use different strategies to attack the
problems

• Network: avoid mixture of old and new
technologies; use only TCP/IP-protocol, get rid of
IPX-protocol.

• Operating systems: support a small number of
well-known systems. Configure lean systems,
don’t install unneeded components. Reduce
Windows OS for device-servers.

• Clone systems: exclude faults from bad system
configurations use automatic install procedures to
get as identical systems as possible.

• Hardware variety: work with large numbers
(~20) of identical PC-Hardware to run the
processes. By so doing it’s easy to demonstrate
that you have faulty hardware if the problem exists
on only one PC of a family of similar ones.

• Applications: use templates and wizards to create
applications from scratch. Provide tools to run
automatic checks against applications which
control the answers returned by requests for
standard control-system properties as well as
application specific properties.

• Standards: established independent from
operating systems. So having platform
independent tools available to check all levels of
control system architecture.

CONCLUSION

Fault identification plays an important role in
establishing reliable and readily available control systems.
Such control systems are a prerequisite for highly
efficient operation which is required for the new PETRA
III accelerator to be built at DESY [4]

REFERENCES

[1] Rüdiger Schmitz, ”A Control System for the DESY
Accelerator Chains”, proceedings of PCaPAC’99,
http://conference.kek.jp/PCaPAC99

[2] TINE (Threefold Integrated Network Environment),
http://desyntwww.desy.de/tine

[3] R. Kammering, O. Hensler, K. Rehlich, A. Petrosyan,
“Review of Two Years Experience with an Electronic
Logbook”, ICALEPCS 2003, Gyeongju, Korea

[4] K. Balewski, W. Brefeld, W. Decking, H. Franz, R.
Röhlsberger, E. Weckert (Editors), “PETRA III: A
Low Emittance Synchrotron Radiation Source”,
Technical Design Report, DESY 2004-35, February
2004

2005, Hayama, JapanProceedings of PCaPAC

