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Abstract 
An accelerator control system must in general support 

a variety of hardware devices, and more often than not, a 
variety of different field bus types. It is very tedious to 
write control software dealing with the different bus types 
at the driver level without an overlying systematic 
interface. The problem of supplying the control system 
engineer with a common device interface, regardless of 
field bus, has been tackled with great success by control 
systems such as EPICS [1], COACK [2], and DOOCS [3], 
but has as yet received little attention in TINE [4].   

We report here on the first efforts to provide a multi-
language, multi-platform, generic device interface for the 
TINE control system.  Specifically, the goal is to offer via 
the TINE client interface a generic view of such disparate 
busses as USB, CAN, RS232, GPIB, PROFI, VME and 
SEDAC. The developer must be able to access all of the 
features of the underlying bus if desired but at the same 
time be unaware of the details.   With this scheme, fully 
functional and extensible TINE servers can be generated 
using the TINE server wizard; simple generic servers can 
offer simple device control via database configuration; 
and by using the TINE client interface, the server 
redirection feature allows an engineer to develop a server 
from a remote location. 

INTRODUCTION 
The access and control of hardware devices is typically 

achieved via fundamental ‘Get’ and ‘Set’ operations, 
where a ‘Get’ is used to acquire data or status 
information from the bus and a ‘Set’ is used to change 
control modes or download data to the hardware.  The 
details behind these simple operations are in general 
quite varied for disparate bus types.  Some bus drivers 
offer single-channel read and write calls while others 
utilize duplex channels for read and write. The bus data 
format can also be different.  For instance, RS232 deals 
with character string data, whereas SEDAC deals with 
short integers.  Hence the interfaces to these ‘Get’ and 
‘Set’ operations are generally just as varied as the details 
behind them. 

Although commercial hardware bus cards generally 
come with a driver, it frequently imposes an undue 
burden on the software developer to master the details of 
‘yet another’ API in order to communicate with his 
hardware. 

Many control systems already address this problem by 
providing a common device interface which hides all 
hardware bus specific features. To date, however, this has 
never been a burning issue with the TINE control system, 
as independent, decoupled, driver interfaces have 
traditionally been used for the front-end bus in question.   

In particular, as the in-house SEDAC bus dominated 

the hardware in use by HERA as well as its pre- at home 
accelerators, most software developers were usually quite 
with the available SEDAC API.  Additional hardware 
using GPIB, CAN, RS232, or VME was simply dealt 
with on an individual basis.  However, with the advent of 
the PETRAIII project (along with on-going work with 
VUV-FEL) the advantages of providing a common 
device interface to the software developers has become 
manifest.  Namely, SEDAC will no longer be the 
dominate field bus, and it will be most desirous to be able 
to seamlessly upgrade the hardware busses in use by the 
front-end servers without involving major re-writes. 

CDI 

General philosophy 
The basic criteria which the common device interface 

(CDI) package must fulfill include the following.  It must 
present a device access API to the developer which hides 
all details of the bus being used. (Indeed, the developer 
should be completely unaware of which bus the hardware 
resides on).  It must be platform independent.  And it 
must be language neutral as far as possible.  That is, CDI 
calls in C should resemble analogous calls in Java or 
Visual Basic as much as possible. 

The CDI package we make use of has a three-tier 
architecture. The lowest layer makes use of the direct 
interface to the bus drivers for a given hardware bus.  At 
this level, the bus-specific ‘Get’ and ‘Set’ data operations 
are mapped into CDI acceptable plugs.  The middle tier 
accepts these plugs, where bus initializers, accessors, 
terminators, and other configuration routines are 
provided.  The middle tier also maintains a thread engine 
where all IO is managed.  Finally, it offers synchronous 
and asynchronous device access routines as well as 
configuration routines to the upper tier.  The upper tier 
maps the raw CDI interface to the TINE control system, 
where the TINE client-side API calls can then be used to 
access the local hardware.  This is shown schematically 
below in figure 1. 

TINE Layer 
- Initialize via API or Database 
- Client interface to hardware 
- Remote services 

↓  

CDI Layer 
- Initialize via API 
- IO Tables 
- Device Lists 
- Delivery and Message System 

↓  

Bus Driver Layer 

Figure 1: Schematic of CDI architecture. 
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In general, a TINE device server will have three 
avenues for accessing its hardware. The designated bus 
driver is of course available. The raw CDI API (second 
tier) is likewise available. Finally, the developer can 
make use of the TINE client API to access the hardware, 
in which case all data acquisition, be it from another 
server or the local hardware bus, can be managed with 
the same API. 

Device Access Interface to bus driver 
For interfacing a bus driver with the CDI a set of 

standard interface calls must be registered in the lowest 
layer.  These are basically the ‘Get’, ‘Set’, ‘Open’ and 
‘Close’ operations which define the bus behavior.  For 
duplex bus drivers a callback function is used for 
receiving data.  The bus specific parameters needed are 
passed directly from the middle layer of the CDI. To 
support a new bus interface card one essentially needs to 
provide the mapping of the bus driver calls onto the CDI 
plug.  In this layer, data are passed directly back and 
forth without any manipulation. 

Common Device Interface - CDI 
The CDI API includes the following calls: 

• cdiOpen() initializes a bus line with bus specific 
parameters.  In the case of RS232, for example, the 
basic communication parameters, such as baud rate, 
data word size and so on need to be provided, 
whereas for CAN, the data transmission speed, CAN 
message protocol used, etc. need to be provided. 

• cdiClose() terminates the communication for the bus 
line. 

• cdiRegisterDevice() registers a connected device. 
• cdiRequest() transmits data to or from the bus for a 

given set of devices.  Besides information describing 
the input and output data sets this routine accepts 
data masks and comparison patterns which together 
determine under what circumstances a callback event 
is fired, if the call is asynchronous.  A call to 
CdiRequest() can also optionally specify any 
additional bus parameters which might be relevant 
for the ensuing device access.   Furthermore, the 
nature of the bus access is specified in the call.  This 
can be simple ‘READ’ and ‘WRITE’ operations as 
well as ‘pseudo-atomic’ ‘READ-WRITE’ or 
‘WRITE-READ’ operations.  

• cdiRegisterRedirectedDevice() registers a device 
connected to a remote server.  

 
The CDI API can be used to access the hardware, in 

which case initialization calls such as cdiOpen() and 
cdiRegisterDevice() must supply the hardware bus and 
hardware address.  After a device name has been bound 
to a device, calls to cdiRequest() no longer need to pass 
bus specific information.  Such registration API calls can 
be avoided by supplying a CDI device database 
description (see below). 

TINE Interface to CDI 
The CDI calls are easily mapped to the TINE client 

API calls.  Thus the synchronous and asynchronous data 
acquisition calls ExecLink() and AttachLink() [4] can be 
used in the same way when accessing the local hardware 
as when accessing information from a remote server. 

Furthermore, automatic format conversion can take 
place at this level.  If the developer wants an array of 10 
float values from the hardware, the TINE layer will see 
that he gets 10 float values, regardless if the bus is 
delivering character strings or integers.  Of course the 
string parsing instructions must be known at this level! 

In addition, a TINE Front End Controller (FEC) which 
uses CDI will automatically offer remote access to its 
hardware and to its hardware configuration by running a 
CDI server as a separate TINE equipment module.  As a 
consequence it is a simple matter to use the TINE server 
redirection mechanism to redirect ‘local’ hardware 
access to a remote server, a feature which is very useful 
when commissioning and developing a front end server.  
This is depicted below in figure 2. 

from server #2 to server #1.  
 
 

SRVR #1 

AttachLink(“QSPSWL13ai”, …) 
 
-> where ‘QSPSWL13ai’  
     maps to … 
     [can line 1, addr 2, id 0, …] 

SRVR #2 
(development) 

AttachLink(“QSPSWL13ai”, …) 
 
-> where ‘QSPSWL13ai’  
     maps to … 
    [SRVR#1.CDI, 
     addr = ‘QSPSWL13ai’ 

Figure 2: Schematic of data flow for hardware redirection 
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In the above figure, we see that the local CDI database 
(see section 2.6 below) for Server #2 instructs any 
references to a device named “QSPSWL13ai” to be 
forwarded to Server #1.  Whereas the local database for 
Server #1 instructs the same reference to be forwarded to 
the CDI layer, which will know that the device in 
question is located on a CAN bus (line 1), with address 2, 
and so on. 

In this manner, the server code and algorithms can be 
developed on a remote server and moved when ready to 
the production server, which might even have another 
operating system.  

CDI Diagnostics 
The CDI layer also maintains a number of statistics 

counters relating to bus errors, timeouts, total number of 
messages, bus load, etc.  These counters can be read out 
at any time either locally via a set of CDI API calls or 
remotely by accessing the TINE CDI server module. 

Database Configuration of CDI 
All CDI initialization and configuration is available 

via the API calls alluded to in section 2.3 above.  In 
many cases however, it is desirable to hide all details 
concerning the hardware bus and device addressing from 
the server code.  To this end one can make use of the 
basic CDI configuration database, which contains all 
address information and bus parameters for the CDI 
controllable devices.  If this database is present it will be 
scanned by CDI at boot time.  In such a case there is no 
need to make any CDI calls to ‘Open’ or ‘Close’ a line, 
or to register device names.  The server code need only 
make the data acquisition calls ExecLink() and/or 
AttachLink() and supply the callback functions and logic 
applicable to the device access. 

We reiterate: The CDI configuration database is a 
simple database which matches a device name to a 
hardware address and set of bus parameters.  It does not 
specify how or how often a hardware device is to be 
accessed.  Nor does it specify what actions are to be taken 
following data access or hardware events.   

It is of course tempting to take this a step further, 
where these kinds of things (or at least some common 
subset of them) are indeed specified.  We are 
intentionally avoiding these issues at this juncture. 
Largely, this sort of second-level configuration will be 
dealt with via the TINE server wizard [5], which will 
generate code based on the developer’s wishes.  We tend 
to favor this approach since there is frequently a large 
amount of ‘tweaking’ which is apt to take place by the 
developer when he is commissioning his server.  Once 
the necessary hardware IO goes beyond the simplest 
‘read’, ‘write’, or ‘poll’ operations, the server developer 
is often confronted with a wide variety of adjustable 
parameters involving everything from timing and delays 
to various ways of combining, filtering or massaging the 
arriving bus data. Although making adjustments in a 
database is in principle easier than making software 

changes (at least the debug turn-around time is shorter!), 
one very often reaches the point where ‘you’ve got to go 
in and code something anyway’. 

FUTURE DEVELOPMENTS 
Currently, CDI is still in its infancy.  The three field 

busses SEDAC, CAN, and RS232 have been tested 
extensively on Linux, and to some extent on Windows.  
Another popular bus in use by front-end hardware at 
DESY is GPIB, which will soon be incorporated into 
CDI.  Likewise, the VME bus will also be added to the 
CDI repertoire, especially as the package begins being 
tested on VxWorks. 

As the second-tier CDI library is written in C, it is 
easily ported to other platforms.  Of course the hardware 
drivers themselves must be available on the platform in 
question in order to use the CDI.  The device 
management in CDI depends on thread and thread-
synchronization operations which must also be made 
available to the CDI library.  The CDI thread operations 
essentially wrap POSIX thread operations for UNIX 
systems and Windows thread operations for Windows 
systems.  Porting CDI to VxWorks will involve wrapping 
the VxWorks task operations.  This needs to be tested. 

Using CDI in Java will involve providing a JNI 
interface to the CDI library which must be available on 
the platform in question.  Likewise this needs to be tested. 

CONCLUSION 
The current version of TINE CDI in use at DESY 

serves as an existence proof of the viability of offering 
the TINE client API to server developers for accessing 
server hardware.  It offers remarkable simplicity to the 
developer for ‘simple’ operations, yet at the same time 
allows the developer to access the full range of the 
hardware capabilities of the bus if necessary.   

Future projects at DESY, such as PETRA III, will 
make extensive use of TINE CDI.  That is planned. Even 
at the present time however, new elements in the existing 
accelerator control are using a wider variety of field 
busses.  In other words: “It’s not all SEDAC!”  Thus it is 
already an attractive idea to regain the degree of 
uniformity that CDI offers at the device server level.  So 
there is a rich test bed where we can hone and refine the 
current CDI library for its use in the next generation of 
DESY accelerators. 
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