

COMMON DEVICE ACCESS FOR ACCELERATOR CONTROLS

Reinhard Bacher, Philip Duval and Honggong Wu, DESY MST, Hamburg, Germany

Abstract
An accelerator control system must in general support

a variety of hardware devices, and more often than not, a
variety of different field bus types. It is very tedious to
write control software dealing with the different bus types
at the driver level without an overlying systematic
interface. The problem of supplying the control system
engineer with a common device interface, regardless of
field bus, has been tackled with great success by control
systems such as EPICS [1], COACK [2], and DOOCS [3],
but has as yet received little attention in TINE [4].

We report here on the first efforts to provide a multi-
language, multi-platform, generic device interface for the
TINE control system. Specifically, the goal is to offer via
the TINE client interface a generic view of such disparate
busses as USB, CAN, RS232, GPIB, PROFI, VME and
SEDAC. The developer must be able to access all of the
features of the underlying bus if desired but at the same
time be unaware of the details. With this scheme, fully
functional and extensible TINE servers can be generated
using the TINE server wizard; simple generic servers can
offer simple device control via database configuration;
and by using the TINE client interface, the server
redirection feature allows an engineer to develop a server
from a remote location.

INTRODUCTION
The access and control of hardware devices is typically

achieved via fundamental ‘Get’ and ‘Set’ operations,
where a ‘Get’ is used to acquire data or status
information from the bus and a ‘Set’ is used to change
control modes or download data to the hardware. The
details behind these simple operations are in general
quite varied for disparate bus types. Some bus drivers
offer single-channel read and write calls while others
utilize duplex channels for read and write. The bus data
format can also be different. For instance, RS232 deals
with character string data, whereas SEDAC deals with
short integers. Hence the interfaces to these ‘Get’ and
‘Set’ operations are generally just as varied as the details
behind them.

Although commercial hardware bus cards generally
come with a driver, it frequently imposes an undue
burden on the software developer to master the details of
‘yet another’ API in order to communicate with his
hardware.

Many control systems already address this problem by
providing a common device interface which hides all
hardware bus specific features. To date, however, this has
never been a burning issue with the TINE control system,
as independent, decoupled, driver interfaces have
traditionally been used for the front-end bus in question.

In particular, as the in-house SEDAC bus dominated

the hardware in use by HERA as well as its pre- at home
accelerators, most software developers were usually quite
with the available SEDAC API. Additional hardware
using GPIB, CAN, RS232, or VME was simply dealt
with on an individual basis. However, with the advent of
the PETRAIII project (along with on-going work with
VUV-FEL) the advantages of providing a common
device interface to the software developers has become
manifest. Namely, SEDAC will no longer be the
dominate field bus, and it will be most desirous to be able
to seamlessly upgrade the hardware busses in use by the
front-end servers without involving major re-writes.

CDI

General philosophy
The basic criteria which the common device interface

(CDI) package must fulfill include the following. It must
present a device access API to the developer which hides
all details of the bus being used. (Indeed, the developer
should be completely unaware of which bus the hardware
resides on). It must be platform independent. And it
must be language neutral as far as possible. That is, CDI
calls in C should resemble analogous calls in Java or
Visual Basic as much as possible.

The CDI package we make use of has a three-tier
architecture. The lowest layer makes use of the direct
interface to the bus drivers for a given hardware bus. At
this level, the bus-specific ‘Get’ and ‘Set’ data operations
are mapped into CDI acceptable plugs. The middle tier
accepts these plugs, where bus initializers, accessors,
terminators, and other configuration routines are
provided. The middle tier also maintains a thread engine
where all IO is managed. Finally, it offers synchronous
and asynchronous device access routines as well as
configuration routines to the upper tier. The upper tier
maps the raw CDI interface to the TINE control system,
where the TINE client-side API calls can then be used to
access the local hardware. This is shown schematically
below in figure 1.

TINE Layer
- Initialize via API or Database
- Client interface to hardware
- Remote services

↓

CDI Layer
- Initialize via API
- IO Tables
- Device Lists
- Delivery and Message System

↓

Bus Driver Layer

Figure 1: Schematic of CDI architecture.

2005, Hayama, JapanProceedings of PCaPAC

In general, a TINE device server will have three
avenues for accessing its hardware. The designated bus
driver is of course available. The raw CDI API (second
tier) is likewise available. Finally, the developer can
make use of the TINE client API to access the hardware,
in which case all data acquisition, be it from another
server or the local hardware bus, can be managed with
the same API.

Device Access Interface to bus driver
For interfacing a bus driver with the CDI a set of

standard interface calls must be registered in the lowest
layer. These are basically the ‘Get’, ‘Set’, ‘Open’ and
‘Close’ operations which define the bus behavior. For
duplex bus drivers a callback function is used for
receiving data. The bus specific parameters needed are
passed directly from the middle layer of the CDI. To
support a new bus interface card one essentially needs to
provide the mapping of the bus driver calls onto the CDI
plug. In this layer, data are passed directly back and
forth without any manipulation.

Common Device Interface - CDI
The CDI API includes the following calls:

• cdiOpen() initializes a bus line with bus specific
parameters. In the case of RS232, for example, the
basic communication parameters, such as baud rate,
data word size and so on need to be provided,
whereas for CAN, the data transmission speed, CAN
message protocol used, etc. need to be provided.

• cdiClose() terminates the communication for the bus
line.

• cdiRegisterDevice() registers a connected device.
• cdiRequest() transmits data to or from the bus for a

given set of devices. Besides information describing
the input and output data sets this routine accepts
data masks and comparison patterns which together
determine under what circumstances a callback event
is fired, if the call is asynchronous. A call to
CdiRequest() can also optionally specify any
additional bus parameters which might be relevant
for the ensuing device access. Furthermore, the
nature of the bus access is specified in the call. This
can be simple ‘READ’ and ‘WRITE’ operations as
well as ‘pseudo-atomic’ ‘READ-WRITE’ or
‘WRITE-READ’ operations.

• cdiRegisterRedirectedDevice() registers a device
connected to a remote server.

The CDI API can be used to access the hardware, in

which case initialization calls such as cdiOpen() and
cdiRegisterDevice() must supply the hardware bus and
hardware address. After a device name has been bound
to a device, calls to cdiRequest() no longer need to pass
bus specific information. Such registration API calls can
be avoided by supplying a CDI device database
description (see below).

TINE Interface to CDI
The CDI calls are easily mapped to the TINE client

API calls. Thus the synchronous and asynchronous data
acquisition calls ExecLink() and AttachLink() [4] can be
used in the same way when accessing the local hardware
as when accessing information from a remote server.

Furthermore, automatic format conversion can take
place at this level. If the developer wants an array of 10
float values from the hardware, the TINE layer will see
that he gets 10 float values, regardless if the bus is
delivering character strings or integers. Of course the
string parsing instructions must be known at this level!

In addition, a TINE Front End Controller (FEC) which
uses CDI will automatically offer remote access to its
hardware and to its hardware configuration by running a
CDI server as a separate TINE equipment module. As a
consequence it is a simple matter to use the TINE server
redirection mechanism to redirect ‘local’ hardware
access to a remote server, a feature which is very useful
when commissioning and developing a front end server.
This is depicted below in figure 2.

from server #2 to server #1.

SRVR #1

AttachLink(“QSPSWL13ai”, …)

-> where ‘QSPSWL13ai’
 maps to …
 [can line 1, addr 2, id 0, …]

SRVR #2
(development)

AttachLink(“QSPSWL13ai”, …)

-> where ‘QSPSWL13ai’
 maps to …
 [SRVR#1.CDI,
 addr = ‘QSPSWL13ai’

Figure 2: Schematic of data flow for hardware redirection

2005, Hayama, JapanProceedings of PCaPAC

In the above figure, we see that the local CDI database
(see section 2.6 below) for Server #2 instructs any
references to a device named “QSPSWL13ai” to be
forwarded to Server #1. Whereas the local database for
Server #1 instructs the same reference to be forwarded to
the CDI layer, which will know that the device in
question is located on a CAN bus (line 1), with address 2,
and so on.

In this manner, the server code and algorithms can be
developed on a remote server and moved when ready to
the production server, which might even have another
operating system.

CDI Diagnostics
The CDI layer also maintains a number of statistics

counters relating to bus errors, timeouts, total number of
messages, bus load, etc. These counters can be read out
at any time either locally via a set of CDI API calls or
remotely by accessing the TINE CDI server module.

Database Configuration of CDI
All CDI initialization and configuration is available

via the API calls alluded to in section 2.3 above. In
many cases however, it is desirable to hide all details
concerning the hardware bus and device addressing from
the server code. To this end one can make use of the
basic CDI configuration database, which contains all
address information and bus parameters for the CDI
controllable devices. If this database is present it will be
scanned by CDI at boot time. In such a case there is no
need to make any CDI calls to ‘Open’ or ‘Close’ a line,
or to register device names. The server code need only
make the data acquisition calls ExecLink() and/or
AttachLink() and supply the callback functions and logic
applicable to the device access.

We reiterate: The CDI configuration database is a
simple database which matches a device name to a
hardware address and set of bus parameters. It does not
specify how or how often a hardware device is to be
accessed. Nor does it specify what actions are to be taken
following data access or hardware events.

It is of course tempting to take this a step further,
where these kinds of things (or at least some common
subset of them) are indeed specified. We are
intentionally avoiding these issues at this juncture.
Largely, this sort of second-level configuration will be
dealt with via the TINE server wizard [5], which will
generate code based on the developer’s wishes. We tend
to favor this approach since there is frequently a large
amount of ‘tweaking’ which is apt to take place by the
developer when he is commissioning his server. Once
the necessary hardware IO goes beyond the simplest
‘read’, ‘write’, or ‘poll’ operations, the server developer
is often confronted with a wide variety of adjustable
parameters involving everything from timing and delays
to various ways of combining, filtering or massaging the
arriving bus data. Although making adjustments in a
database is in principle easier than making software

changes (at least the debug turn-around time is shorter!),
one very often reaches the point where ‘you’ve got to go
in and code something anyway’.

FUTURE DEVELOPMENTS
Currently, CDI is still in its infancy. The three field

busses SEDAC, CAN, and RS232 have been tested
extensively on Linux, and to some extent on Windows.
Another popular bus in use by front-end hardware at
DESY is GPIB, which will soon be incorporated into
CDI. Likewise, the VME bus will also be added to the
CDI repertoire, especially as the package begins being
tested on VxWorks.

As the second-tier CDI library is written in C, it is
easily ported to other platforms. Of course the hardware
drivers themselves must be available on the platform in
question in order to use the CDI. The device
management in CDI depends on thread and thread-
synchronization operations which must also be made
available to the CDI library. The CDI thread operations
essentially wrap POSIX thread operations for UNIX
systems and Windows thread operations for Windows
systems. Porting CDI to VxWorks will involve wrapping
the VxWorks task operations. This needs to be tested.

Using CDI in Java will involve providing a JNI
interface to the CDI library which must be available on
the platform in question. Likewise this needs to be tested.

CONCLUSION
The current version of TINE CDI in use at DESY

serves as an existence proof of the viability of offering
the TINE client API to server developers for accessing
server hardware. It offers remarkable simplicity to the
developer for ‘simple’ operations, yet at the same time
allows the developer to access the full range of the
hardware capabilities of the bus if necessary.

Future projects at DESY, such as PETRA III, will
make extensive use of TINE CDI. That is planned. Even
at the present time however, new elements in the existing
accelerator control are using a wider variety of field
busses. In other words: “It’s not all SEDAC!” Thus it is
already an attractive idea to regain the degree of
uniformity that CDI offers at the device server level. So
there is a rich test bed where we can hone and refine the
current CDI library for its use in the next generation of
DESY accelerators.

REFERENCES
[1] http://www.aps.anl.gov/epics
[2] M. Mutoh, et al., "Development of Generalized

Device Layer for the COACK System", PCaPAC
2002, Frascati, Italy

[3] http://tesla.desy.de/doocs/doocs.html
[4] http://desyntwww.desy.de
[5] P.Duval and V.Yarygin, “The Use of Wizards in

Creating Control Applications”, ICALEPCS 2001,
San Jose, CA.

2005, Hayama, JapanProceedings of PCaPAC

