
DEVELOPMENT OF LINUX-BASED IOC WITH A VME-BUS COMPUTER

Guobao ShenA) *, Junichi Odagiri A), Norihiko Kamikubota A), Noboru Yamamoto A), Kazuro
Furukawa A), Hidetoshi Nakagawa A), Tadahiko Katoh A), Susumu Yoshida B), Makoto Takagi B)

A) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 B) Kanto Information Service (KIS), 8-21, Bunkyo, Tsuchiura, 300-0045, Japan.

Abstract
EPICS is a control software tool-kit used to develop

control systems for accelerators and experiments. The
original EPICS assumes the use of VME-bus computers,
and a commercial license of a real-time operating system
(VxWorks). However, recent EPICS versions (after 3.14)
allow the use of Linux instead of VxWorks.

Intel-based single-board computers with a VME-bus
have been available on the commercial market for long
time. Thus, increasing interests have arisen to introduce
Linux-based VME-bus computers with Intel CPU boards
into EPICS. At KEK, the development of a Linux-based
IOC has started using Linux and an Intel-based VME
CPU board.

 This paper describes the recent development status. It
includes 2 parts. One is a system-loading analysis of an
IOC, running EPICS with databases for dedicated beam-
position monitor controllers. Another is a preliminary
report on interrupt performance measurements.

INTRODUCTION

EPICS 3.14 and Linux-based IOC
EPICS (Experimental Physics and Industrial Control

System) is a control software tool-kit for a distributed

control system, which was co-developed by Los Alamos

National Laboratory and Argonne National Laboratory [1,

2]. Originally, IOC (Input Output Controller) of EPICS

needed (a) a commercial license of a real-time operating

system (VxWorks) as an underlying target system, and (b)

VME-bus computers.
From the version of EPICS 3.14, which was released in

2002, an IOC can run on many operating systems, such as

Linux. This new feature becomes possible by introducing
an operating system independent layer into the iocCore
(the EPICS target system) [3].

Intel-based single-board computers with a VME-bus
(hereafter Intel-based VME-SBC) have been available on

the commercial market for a long time. In general, Intel-
based VME-SBCs have a higher performance at a lower

cost than PowerPC/68K-based CPU boards. Taking into

account the cost for VxWorks, using an Intel-based VME-
SBC for Linux-based IOC is effective to reduce the total

system cost.
Actually, some accelerator laboratories have already

introduced personal computers (PCs) for their control
systems. The CLS (Canadian Light Source) used some
industrial PCs and some Intel-based embedded PCs (PC-
104) as IOCs [4]. The SNS (Spallation Neutron Source)
“will also continue to deploy its control system on top of

commodity-type PCs with a mix of both VME/VXI and
PC front-end processors.”[5]

J-PARC and BPMC
J-PARC (Japan Proton Accelerator Research Complex)

is a high-intensity proton accelerator facility. This project
is a joint project between JAERI (in Tokai) and KEK (in
Tsukuba), and is now under construction at the Tokai site
[6]. In KEK, a dedicated controller for beam-position
monitors (hereafter BPMC) has been developed by
Mitsubishi Electric Corporation, which will be used in the
50-GeV main ring (MR) [7]. In the whole main ring, there
will be 208 BPMCs with 13 groups (see Fig. 1).

Figure 1: BPMC Configuration of J-PARC MR.

BPMC and NetDev
The IOC for BPMCs uses a network-based device

driver, NetDev [8, 9]. The original NetDev was developed
for commercial PLCs (Programmable Logic Controller)
with a network interface, such as FA-M3 (Yokogawa),
MELSEC-Q (Mitsubishi), and CVM1/CS1 (Omron).
NetDev provides a common framework to support
different types of intelligent devices, as illustrated in Fig.
2. Since the BPMC was designed to have a similar
communication protocol as those of PLCs, adding BPMC
to NetDev was easy.

IOC SYSTEM LOADING ANALYSIS

Configuration of experimental setup

*e-Mail: <shengb@post.kek.jp>

Figure 2: NetDev Communication Mechanism.

2005, Hayama, JapanProceedings of PCaPAC

The development of a Linux-based IOC using an Intel-
based VME-SBC started with 16 BPMCs. This IOC is
expected to be used for one group of the BPMC
controllers. The configuration of the experimental setup
is illustrated in Fig. 3.

Figure 3: Experimental setup.

The CPU board is a VMIVME7805, an Intel-based
VME-SBC from the VMIC Company, GE Fanuc
Embedded System [10]. The CPU is configured with a
Petium4-M (2.2 GHz), 1 GB memory, a Compact Flash
disk of 1 GB capacity, and 2 Ethernet ports. The Eth0
(1Gbps) is connected to the BPMC private network, and
the Eth1 (100Mbps) is connected to the J-PARC control
network. A standard PC (Linux Console) is connected to
the J-PARC control network. GUI-based control panels
for the BPMCs run on it (Fig. 4). There is an “INT” board
in the VME crate, which is used to generate a VME-bus
interrupt to evaluate of interrupt performances.

The development environment is implemented under
EPICS release 3.14.6 [11]. One of popular Linux
distributions, Debian 3.1 (Sarge) [12], is used as the
operating system with the EXT2FS file system, which
uses Linux kernel version 2.4.27.

The VMIVME7805 uses a PCI-VME interface chip,
Tundra Universe II, to access the VME bus. The VME-
bus driver for Linux, vme_universe, is a part of the BSP
(Board Support Package), which is available for free
under the BSD license. The BSP version that we have
used is vmisft-7433-3.3.

On the IOC, two system services, SSHD and DHCPD,
are activated. SSHD (Secure Shell Daemon) provides
secure encrypted communications between the console
and the IOC. Most of the developments have been made
at the Linux console using the SSH protocol. DHCP
(Dynamic Host Configuration Protocol) service is
necessary to assign IP addresses of BPMCs during BPMC
booting.

IOC Loading Analysis
We have implemented a stand-alone EPICS system on

a Compact Flash disk. The disk includes Debian basic
system, development tools, a Universe II chip driver, and
all of the EPICS base (source, object and binary) files.
EPICS databases for the 16 BPMCs are also included.
The total disk usage is 370 MB.

All of the database records for the 16 BPMCs are listed
in Table 1. Totally, there are 1088 records. The jpMrBpm
record is used to store waveform data of the BPMC. Each
BPMC has 4 channels, and the data of each channel is
20480 bytes. The signal of each channel is sampled with a
speed up to maximum 80MSPS (Mega samples per sec) at
14 bits. After calculating the sampling data by a specific
software algorithm, the value of each BPMC
(proportional to the signal amplitude) is transmitted to
IOC. The time of a standard repetition cycle is 3.64
seconds, including sampling, calculating and transmitting
data to IOC.

Table 1: Records used in the IOC

Record Types Total numbers
Ai 16 (1 * 16)
Ao 16 (1 * 16)
Bi 128 (8 * 16)
Bo 48 (3 * 16)
Longin 432 (27 * 16)
Longout 320 (20 * 16)
Ulongin 32 (2 * 16)
Ulongout 32 (2 * 16)
mbbiDirect 16 (1 * 16)
mbboDirect 16 (1 * 16)
Calc 16 (1 * 16)
jpMrBpm 16 (1 * 16)

The control panels of BPMC were developed by
Mitsubishi with a standard GUI editor, dm2k. When the
control panels are running with a 16-waveform display
(Fig. 4), the number of network packets per second at the
console side is about 160, and the average packet size is
about 660 byte. Thus, the network traffic between the
IOC and the console is about 0.85Mbps.

Figure 4: BPMC control panels.

At a run-time, the usage of CPU power is 1~3% and the
memory usage is about 8.5%. The number of network
packets per second at the BPMC side is less than 650, and
the average packet size is about 1066 bytes. Thus, the
network traffic between the IOC and the BPMCs is less
then 6 Mbps (5.5 Mbps in average). Since the Ethernet
port is 1 Gbps, the network traffic corresponds to less

2005, Hayama, JapanProceedings of PCaPAC

than 1%. The results are given in Table 2, which show
that the VMIVME7805 has sufficient capacity (CPU,
memory, and network throughput) to run one group of
BPMCs.

Table 2: Results of IOC Loading Analysis.

CPU MEM Network
(BPMC side)

Network
(Console side)

Disk
Usage

1~3 % ~8.5% ~ 6 Mbps ~ 0.85 Mbps 370 MB

INTERRUPT PERFORMANCES

EPICS VME Library and Interrupt Handling
The EPICS VME library, vmeUniverse, is being

developed at KSTAR [13]. The library is designed to
support a set of functions similar to VxWorks, in order to
enable easier porting of the existing hardware drivers of
VxWorks to Linux. The EPICS VME library
(vmeUniverse) uses functions of the VME-bus driver of
BSP (vme_universe).

More work towards full-featured support is in progress.
The existing version of the EPICS VME library supports
the following functions:

• Map VME address space into a processor’s address
space, vmeUniverse_sysBusToLocalAddrs().

• Connect interrupts with user-specified routines,
vmeUniverse_intConnect().

• Generates a local-bus interrupt,
vmeUniverse_generateVMEInterrupt().

The interrupts can be generated by two different
methods.

• (1) One is to call a special function of the VME-bus
driver, which triggers a register of the Universe II
chip and generates an interrupt.

• (2) Another is to uses a dedicated VME board,
“INT” in Fig. 3, which generates a VME-bus
interrupt when a write action is made into a special
register.

During a measurement with a dedicated VME board,
sometimes a user-specified interrupt routine gets called
twice upon a single interrupt. This is because a re-
enabling interrupt is made at an inappropriate position in
the original VME-bus driver. After moving the function
of enabling an interrupt to the EPICS VME library,
everything works well [14].

Performance Measurement
The interrupt response times are measured by two

interrupt methods. The algorithm of the measurement is:
1. Read the count of the Time Stamp Counter, a

special counter of Pentium CPU.
2. Generate an interrupt, by calling a function to

trigger the Universe II chip, or by writing a value
to the register of a dedicated VME board.

3. Read the count of the Time Stamp Counter again
at the entrance of the user-specified interrupt
routine.

4. Calculate the response times, taking into account
the CPU clock rate.

5. Repeat the procedure to accumulate data. Actually,
this is carried out by a sub thread, which is created
by a shell script (usually st.cmd).

In addition, the response times are measured in 2 cases:
• Case 1: running iocCore only.
• Case 2: running iocCore with the BPMC databases.
The purpose of Case 2 is to respond to Ethernet

interrupts generated by the BPMC, which make the
system work heavier during the measurements.

Fig. 5 is a typical result of one measurement, which
corresponds to 1,000,000 loops. It shows a histogram of
the response times in Case 2, caused by using the
Universe II chip. Here, we define the overhead as the
minimum response time. The overhead in Fig. 5 is less
than 5micro-seconds. The 90.0% of the response times are
around 15 to 18 micro-seconds (3 micro-seconds width).
The latency is defined as the maximum response time.
The latency in Fig. 5 is less than 1386 micro-seconds.

0-
1

1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1

1
11

-1
2

12
-1

3
13

-1
4

14
-1

5
15

-1
6

16
-1

7
17

-1
8

18
-1

9
19

-2
0

20
-2

1
21

-2
2

22
-2

3
23

-2
4

24
-2

5
25

-2
6

26
-2

7
27

-2
8

28
-2

9
29

-3
0

30
-3

1
31

-3
2

32
-3

3
33

-3
4

34
-3

5
35

-3
6

36
-3

7
37

-3
8

38
-3

9
39

-4
0

40
-4

1
41

-4
2

42
-4

3
43

-4
4

44
-4

5
45

-4
6

46
-4

7
47

-4
8

48
-4

9
49

-5
0

50
-5

1
51

-5
2

52
-5

3
53

-5
4

54
-5

5
55

-5
6

56
-5

7
57

-5
8

58
-5

9
59

-6
0

60
-6

1
61

-6
2

65
-6

6
66

-6
7

89
1-

89
2

91
7-

91
8

13
85

-1
38

60

100000

200000

300000

400000

500000

600000

700000

23 11111242413313141920253122333434347411
5

16
2

26
2

30
2

23
9

22
1

45
2

33
0

35
9

63
3

85
1

12
44

17
34

20
99

36
10

99
80

20
89

8
15

27
5

12
70

4
79

89
64

72
62

70
75

37
19

77
2

25
47

92
62

52
05

2237 78818242733000 0

Overhead: < 5 usec
 Latency: < 1386 usec

E
ve

nt
s

Time (micro-second)

 Figure 5: Interrupt response times by the Universe II chip.

There is another obvious peak at around 24 to 25
micro-seconds in Fig. 5. It may be caused by some
background interrupts in the kernel space, for example
Ethernet interrupts generated by BPMCs, or some clock
interrupts. The user-specified interrupt routines are
handled in the Linux user space. Thus, they would be
suspended by kernel space interrupts.

0-
9

1
0-

19
2

0-
29

3
0-

39
4

0-
49

5
0-

59
6

0-
69

7
0-

79
8

0-
89

9
0-

99
10

0
-1

09
11

0
-1

19
12

0
-1

29
13

0
-1

39
14

0
-1

49
15

0
-1

59
16

0
-1

69
17

0
-1

79
18

0
-1

89
19

0
-1

99
20

0
-2

09
21

0
-2

19
22

0
-2

29
23

0
-2

39
24

0
-2

49
25

0
-2

59
26

0
-2

69
27

0
-2

79
28

0
-2

89
29

0
-2

99
32

0
-3

29
33

0
-3

39
34

0
-3

49
37

0
-3

79
39

0
-3

99
40

0
-4

09
89

0
-8

99
90

0
-9

09
91

0
-9

19
92

0
-9

29
93

0
-9

39
94

0
-9

49
96

0
-9

69
10

70
-1

07
9

11
00

-1
10

9
11

70
-1

17
9

13
50

-1
35

9
13

60
-1

36
9

13
90

-1
39

90

50000

100000

150000

200000

250000

11111111211
06

11212112315914223315
0

41
0

48
5

62
0

83
1

10
04

99
0

98
5

10
59

98
2

10
65

10
65

13
15

20
57

80
63

11
36

10
23

00
07

22
95

13
22

76
41

17
69

34
0000

Overhead: < 50 usec
 Latency: < 1400 usec

E
ve

nt
s

Time (micro-second)

 Figure 6: Interrupt response times by a dedicated VME
board.

2005, Hayama, JapanProceedings of PCaPAC

Fig. 6 shows another histogram of similar conditions to
Fig. 5, but the interrupt source is a dedicated VME board.
The overhead is less than 50 micro-seconds, and the
latency is less than 1400 micro-seconds. About 97.8% of
the response times are in the 40-90 micro-second window.

Detailed results of various measurements are given in
[14]. The results of interrupt overheads and latencies are
summarized in Table 3.

various measurements (UNIT: microsecond).

 Overhead Latency
iocCore Case 1 Case 2 Case 1 Case 2

(1) Interrupt by
Universe II Chip

< 5 < 5 <1341 <1386

(2) Interrupt by
Dedicated board

< 50 < 50 < 890 < 1400

A comparison between Case 1 and Case 2 gives the
following results: the overheads show the same time
values for 2 different cases, but the latencies show worse
values in Case 2 when interrupts are caused by a
dedicated VME board. For different interrupt methods,
the latencies show the same value as in Case 2, but the
overheads show worse values when interrupts are caused
by a dedicated VME board.

Discussion
It should be mentioned that the interrupt latencies are

rather preliminary, because it is apparent that more loops
will result in longer latencies. Moreover, interrupts are
triggered by software in both cases. As a result, interrupts
occur synchronously all the time, which does not simulate
a real world.

The typical response times are different between two
interrupt methods (15~18 micro-seconds vs. 40~90
micro-seconds, by a Universe II chip vs. by a dedicated
VME board).

In Fig. 5, a small number exist in the 4~5 micro-second
range, while most of the response times are in the 15~18
micro-second range.

No study was made to understand time differences.

CONCLUSION
When the BPMC iocCore runs on a VMIVME7805, the

usage of CPU power is less than 3%, and memory usage
is about 8.5%. The network traffic is less than 6 Mbps
(about 5.5 Mbps) between the IOC and the BPMC, and
less than 1 Mbps (about 0.85 Mbps) between the IOC and
the OPI. This result shows sufficient capacity of
VMIVME7805 to run one group of BPMCs (16 BPMCs).

The present measurements show that the latency is less
than 1400 micro-seconds, and that the overhead is less
than 50 micro-seconds, under various conditions. In the

future, more rigorous measurements should be made,
especially for the latency evaluation.

ACKNOWLEDGEMENT
The authors would like to thank Dr. Kukhee Kim at

KSTAR for providing the EPICS VME library. They
would also like to thank Dr. Youichi Igarashi and many
others of physics division at KEK for sharing their
experiments of using Debian on VME-SBC. Finally many
thanks go to Dr. Marty R. Kraimer at Argonne National
Laboratory for his helpful advices.

REFERENCES
[1] http://www.aps.anl.gov/epics/index.php
[2] R. Lange, J. B. Anderson, A. N. Johnson, M. R.

Kraimer, W. E. Norum, L. R. Dalesio, J. O. Hill,
“EPICS: Recent Developments and Future
Perspectives”, Proc. of Int. Conf. on Accelerator and
Large Experimental Physics Control Systems
(ICALEPCS’03), Gyeongju, October 2003, p.278-
281.

[3] M.R. Kraimer, J.B. Anderson, J.O. Hill, W.E. Norum,
“EPICS: A Retrospective on Porting iocCore to
Multiple Operating Systems”, ICALEPCS’01, San
Jose, November 2001, p.238-240.

control_system_technical_specification-matias.pdf
[5] E. L. Williams Jr., G. S. Lawson, “CONTROL

SYSTEMS ON LOW COST COMPUTERS”, Proc.
PAC 2003, May, 2003, Portland, p.288-290

High-Intensity Proton Accelerator, J-PARC", Proc.
PAC 2003, May, 2003, Portland, p.576-580

[7] H. Nakagawa and T. Toyama, KEK, private
communication

[8] J. Odagiri, J. Chiba, K. Furukawa, N. Kamikubota, T.
Katoh, H. Nakagawa, N. Yamamoto, M. Komiyama,
I. Yokoyama, H. Song, Y. Yamamoto, H. Miyaji, H.
Satoh, M. Sugimoto, “EPICS Device/Driver Support
Modules for Network-based Intelligent Controllers”,
ICALEPCS’03, Gyeongju, October 2003, p.494-496

[9] K. Furukawa, J. Chiba, N. Kamikubota, H. Nakagawa,
“Implementation of the EPICS Device Support for
Network-based Controllers”, ICALEPCS’01, San
Jose, November 2001, p.197-199

[10] http://www.vmic.com
[11] http://www.aps.anl.gov/epics/base/R3-14/6.php
[12] http://www.debian.org
[13] K. Kim, KSTAR, KSBI, private communication

VME-SBC”, to be submitted to KEK-Internal Report

[4] http://www.lightsource.ca/machine/pdf/7.4.39.1.rev.2-

[6] Y. Yamazaki, "The JAERI-KEK Joint Project for the

[14] G. Shen, “Linux-based IOC by using Intel-based

Table 3: Summary of the overheads and latencies in

2005, Hayama, JapanProceedings of PCaPAC

