
Real-time Display of Accelerator Status Using JAVA and CORBA

Shiro Kusano*, Norihiko Kamikubota and Kazuro Furukawa
High Energy Accelerator Research Organization (KEK)

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
Mitsubishi Electric System and Service Co. Ltd. *
Umezono 2-8-8, Tsukuba, Ibaraki, 305-0045, Japan

Abstract

Recently, the introduction of object-oriented technologies
into accelerator controls has beenunderstood as a promis-
ing future direction. Among object-oriented technologies,
Java and CORBA have been widely accepted in all indus-
trial fields. We, the KEK electron/positron injector-linac
team members, have investigated the possibility to intro-
duce such technologies for the real-time display of the ac-
celerator status. A test program was developed with Java,
a CORBA client, which communicates with the CORBA
server at a Unix workstation of the KEK linac control sys-
tem. As a result, the status of the KEK linac was shown at a
web-browser of a remote PC. Experiences and discussions
are given in this article.

1 INTRODUCTION

Recently, the object-oriented technologies for distributed
computer systems, such as Java[1] and CORBA[2], have
been paid special attention in the field of accelerator con-
trols as well as in all industrial fields. Java is a platform-
independent language with the capability to create an in-
teractive GUI (Graphical User Interface) at a web-browser.
Thus, Java is a suitable language to develop an application
program with high source portability. CORBA (Common
Object Request Broker Architecture) is expected to become
the standard communication protocol between distributed
computers over networks. The specifications of CORBA
are discussed by the consortium called OMG (Object Man-
agement Group)[2], which includes over 800 members.
The use of CORBA enables smooth communication be-
tween different languages (C, C++, Java, etc.) and different
operating systems.

The control system for the KEK e-/e+ injector-linac
comprises the UNIX-based workstations, VME computers
with the OS-9 operating system, and PLC stations [3, 4].
The TCP and/or UDP protocols (socket functions) are used
for communication between them. Applications for status
display have been developed with the man-machine inter-
faces at the KEK linac. Two man-machine interfaces are
available: 1) the operator's console system with PCs and
Windows NT[5, 6], and 2) the touch-terminal system with
DOS-based PCs [7]. The operator's console system uses
the Winsock functions to communicate with the servers at
Unix workstations. Since the Winsock functions are dif-
ferent from the standard socket functions, the communi-
cation layers for the operator's console system should be

maintained independently. In the touch-terminal system,
the TCP/IP library for DOS-based systems has been used
[8]. By using this library, the sources for the communi-
cation layers are the same as those for Unix workstations.
However, software development with a DOS-based the PC
is not easy because of the 640 kB memory-limit.

We have studied the feasibility of applications which
use both Java and CORBA. If an application is written by
Java and communicates with the CORBA protocol, it is ex-
pected to work at any platform, including both PCs and
Unix workstations, with the same sources. Moreover, it can
communicate with any control systems unless an appropri-
ate CORBA server is ready. We developed an application
with Java which communicates with the KEK linac with
the CORBA protocol. The aim of the application is to pro-
vide a real-time display of the accelerator status at the KEK
linac. Experiences and discussions are given in this article.

2 DEVELOPMENT OF A REAL-TIME
DISPLAY OF ACCELERATOR STATUS

2.1 Overview

We have developed a real-time display of the high-voltage
status of klystrons at the KEK linac. A commercial
CORBA product [9] was installed and has been used in our
tests. We selected product [9] among various possibilities,
since the popular web-browser (the Netscape Communi-
cator) supports the communication classes for Java of this
product.

An overview of our environment is shown in Figure 1.
An application, which acts as a CORBA client, was de-
veloped as a Java applet. The CORBA server was writ-
ten in C++, which uses the C-based libraries of the KEK
linac control system in order to obtain a high-voltage status
of the klystrons. We inspected two points: (1) the source
portability; the same Java applet is available at any of the
different platforms, and (2) the communication availability
with the CORBA protocol between an applet (Java) and the
server (C++).

The communication interface must be described by an
IDL file.1 The use of IDL makes the development of the
communication layer very simple, since the sources of the
communication layer are automatically generated from the
IDL file.

1IDL - Interface Definition Language. IDL is a platform-independent
language to describe communication interfaces. The IDL is one of the key
features of the CORBA specification.

Windows or Macintosh

CORBA
IIOP-protocol

TCP/UDP protocol
(standard RPC

at the KEK-linac)

Java-
applet

CORBA

Web-brawser

Java-
applet

CORBA

Web-brawser

Unix

Java-
applet

CORBA

appletviewer

CORBA server
 (C++)

CORBA

KEK e-/e+ linac
control system

(C-based)

Unix

Figure 1: Overview of our test environment.

2.2 Implementation

IDL file The IDL file in the present test (kly.idl) is given.
The sources for the communication layer (Java codes for
the client, and C++ codes for the server) are generated au-
tomatically from this IDL file.

//kly.idl
typedef string Names[58];
typedef long Data[2784];
interface Kly {

void klyhex(in Name names,
out Data data);

};

Implementation of the klystron serverThe KEK linac
control system includes the C-function, plclocalhex(),
to provide information about the klystron status. This
function is re-defined as a C++ function as:

kly_impl::klyhex(const Names names,
Data data){

int rtn;
char name[6];

for(i=0;i<58;i++) {
strcpy(name, names[i]);
//klystron service in KEK-Linac control
rtn = plc_localhex(name,

(unsigned int *)data+(i*48));
}

}

The server uses the above function as:

main() {
Kly_var klyImpl = new kly_impl();
CORBA_String_var ior =

orb->object_to_string(klyImpl);
}

Implementation of a Java clientThe essential part of the
Java applet is shown below:

org.omg.CORBA.Object orbObject =
orb.string_to_object(url);

kly = KlyHelper.narrow(orbObject);
DataHolder data = new DataHolder();
kly.klyhex(names, data);

Implementation of a html descriptionA html description
is nesessary to download the Java-applet from the web-
server

//kly.html
<applet code=testApplet.class>
<param name=ior value=IOR:012020200.......>
</applet>

2.3 Results

When the Java applet starts with a web-browser (or by a
tool “appletviewer”), it connects to a server by using the
CORBA protocol. The current high-voltage status of the
klystrons at the KEK linac is shown (Figure 2). Since the
screen is refreshed every 1 second, this applet can serve as
a simple klystron alarm, which can be used anywhere the
control network is available.

The source portability of the Java applet has been in-
spected at various platforms. The summary in Table 1
demonstrates the high source portability of Java language.

Table 1: Availability at various platforms

Platform Netscape4.0.x Netscape4.5

Digital Unix OK OK
WindowsNT/95 OK none
MacOS8 OK none
Linux OK OK

3 DISCUSSION

3.1 Communication Throughput

A simple Java applet was developed in order to measure
the communication throughput between a client (an applet)

Figure 2: View of the Java applet with the real-time display
of the klystron status.

and a CORBA server. The sizes of transfered data were
290 byte for sending to a server, and 2784 byte for return.
The observed round-trip times were around 50 ms for two
different cases: (a) the server and the client run at a same
Unix workstation, and (b) the client runs at a PC (Linux,
Pentium 133MHz) while the server at an Unix. This fact
suggests the possibility that a Java applet, which runs at
any remote PC, can communicate with a server at a refresh
rate of 10 Hz (or more).

3.2 Experienced Problems

During the developments, we experienced inconsistencies
between different versions of Java and web-browsers. The
CORBA product in the current tests [9] assumes to use
JDK 1.1.6, while the GUI functions in the web-browsers
are based on JDK 1.0.x. We decided to use old classes in
order to avoid this confusion.

The control system for the KEK linac provides C-based
functions. However, the present CORBA product assumes
to use C++. This incompatibility causes errors when we
link the linac functions to a CORBA server. This prob-
lem was solved by adding the definitions of C-functions in
header files.

3.3 Problems in Windows NT/95

At a PC with Windows NT/95/98, a client (a Java applet)
can communicate with a CORBA server. However, Mi-
crosoft has proposed the DCOM/Active-X as default com-
munication protocols instead of the CORBA protocol. At
present, there is no appropriate way to communicate be-
tween the DCOM/Active-X and the CORBA protocols.

4 CONCLUSION

We have developed a Java applet, which communicates
with a CORBA server at the control system of the KEK
linac, in order to evaluate the availabilities of Java and

CORBA. We confirmed that the Java applet is available at
four different platforms, and that it can communicate with
a CORBA server which resides on the KEK linac. The ob-
served that throughput suggests that a real-time display at
a rate of 10 Hz is possible.

We will proceed with investigations on there subjects;
especially the availability of free CORBA products, and
Java connectivity to a relational database (JDBC).

5 ACKNOWLEDGMENTS

We thank Dr. Gennadiy Obukhov (DESY) for various dis-
cussions. In fact, the sources of his work with VisiBroker
(JOI) helped us very much, especially at the beginning of
this work.

6 REFERENCES

[1] http://java.sun.com

[2] http://www.corba.org or http://www.omg.org

[3] N. Kamikubota, K. Furukawa, K. Nakahara and I. Abe, Nucl.
Instr. Meth. A352(1994)131

[4] N. Kamikubota, K. Furukawa, K. Nakahara, I. Abe and
A. Shirakawa, Proc. Int' l Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS' 95),
Chicago, October 1995, FERMILAB Conf-96/069 p.1052

[5] K. Nakahara, I. Abe, N. Kamikubota and K. Furukawa, Nucl.
Instr. Meth. A293(1990)446

[6] I. Abe, “LINAC PC based control system using ActiveX”,
this workshop

[7] N. Kamikubota, H. Akimoto and K. Furukawa, “PC as a
touch-terminal controller”,this workshop

[8] PC/TCP Release 2.2 (Nov.1992), ftp Software, Inc., MA
U.S.A.

[9] VisiBroker for C++ V3.0, and VisiBroker for Java V3.2, In-
prise Corporation, CA U.S.A.

	TopPage
	Paper Index
	Author Index

