
EMBEDDED REAL-TIME SYSTEMS TO BE APPLIED IN CONTROL
SUBSYSTEMS FOR ACCELERATORS

Beibei Shao, Ruopeng Wang, Tsinghua University, Beijing

Abstract

Compare the commercial RTOS software package
with free software, our choice of system design is
primarily based on current application situations in China.
The authors have some application experiences of
LynxOS, VRTX, pSOS, VXWARK and also some free
software, we hope our discussion will give some hints on
which system to choose in future control system for the
coming several accelerator projects in China. uC/OS and
MCX11 is actually a free real-time kernel which has
recently been applied in control systems of various areas.
And we have found some use of it in accelerator control
subsystem because of its exiguity, availability and
transparency. The structure of a free RTOS kernel, some
basic ideas of real-time system, together with application
of the kernels into accelerator control subsystems, is
described in the paper.

INTRODUCTION
Ten years ago, three accelerators were built in China.

They are the Beijing Electron Positron Collider, the
Accelerator in National Synchrotron Radiation Lab
(NSRL) and the Heavy Ion Accelerator in Lanzhou.
While in recent a few years Chinese physicists had very
difficult time with national financial support. Recently,
however, three new accelerator projects are approved.
They are the upgrade of NSRL, the electron-cooling ring
in Institute of Modern Physics and Shanghai Light Source.
Even though, the budget situation for every project will
be very tight.

In recent a few years we studied several embedded
RTOS. First, there are many free RTOS source code
available on the Internet, such as real time Linux, µ/COS,
MCX11 and so on. Compared to Institutes of Academia
Sinica, there is second cost free resource, which is
available only within Universities: companies donate
much software for education purpose such as VRTX,
pSOS. It makes us a nice condition to learn and evaluate
the software and prepare for the three accelerator projects.

The Lynx is a real time Unix. It is not suitable for
embedded use.

Although the EPICS is a good choice for low cost
solution of making accelerators control system, but it is
based on the VXWARK, expensive commercial software.
The pSOS, a commercial RTOS package, which has been
widely used for communication products development
may be used also for accelerator control. There are many
library functions for various kinds of device drivers,
while the real time kernel itself is a black box for users.

The XRAY from Microtec, which supplies VRTX
RTOS, is also evaluated in our lab. The PC windows
based program debug environment is a powerful tool for
embedded micro-controller application. A program for
VME162 module was developed with a remote PC
through the Internet in our lab.

In this paper, the usage of free software downloaded
from Internet is introduced. The uC/OS has been
successfully moved to a MC68332 based micro-controller
system. The MCX11 has been used for a data acquisition
system in NSRL. It works also in a temperature
monitoring system for the slow control of HERA-b
experiment in DESY. The advantage of using the free
software is:

It is much cheaper than the commercial software.
It has the source code available.
It makes the application program well structured with

multi tasks construction and the program is also reliable.
The disadvantage is it needs really a debug tool then

the program runs away.
Anyway, just like the free software Linux, which is

successfully runs on the PC, the free software source in
the Internet can be used also for micro-controller based
accelerator sub-system control. Especially in China when
the Institute has no enough budget to get commercial
RTOS development tools.

A GLIMPSE INTO REAL-TIME KERNEL
Real-time, multitasking scheme is so complicated that a

clear description will fill volumes. The following is
depiction of critical nomenclatures in a kernel, which may
be helpful to those unfamiliar with such kind of systems.

A real-time kernel provides a software framework
within which different processes can operate and gain
access to various system resources. Real-time systems
usually consist of several processes, or tasks, which need
to have control of the system resources at varying times
due to the occurrence of external events.

A multitasking real-time kernel promotes an orderly
transfer of control from one task to another such that
efficient usage of the computer’s resources is achieved.
Orderly transfers require that the kernel keep track of the
needed resources and the execution state of each task so
that they can be granted to each task in a timely manner.
Response time to a need for kernel services and the
execution time of such services must be sufficiently fast
enough so that no need goes undetected.

One way to achieve timeliness is the assignment of a
priority to each task. The priority of a task is then used to
determine its place within the sequence of execution of all
tasks. Tasks of low priority may have their execution pre-

empted by a task of higher priority so that the latter can
perform some time-critical function.

An event can be any stimulus which requires a reaction
from the kernel or a task. Examples of an event would
include a timer interrupt, an alarm condition, or a
keyboard input. Events may originate externally to the
processor or internally from within the software. If
response time to any event occurs within a period of time
which can be accurately defined and guaranteed, the
kernel can be said to be deterministic.

 Multitasking appears to give the computer the
apparent ability to perform multiple operations
concurrently. Obviously, the computer cannot be doing
two or more things at once as it is a sequential machine.
In multitasking, each task once given operating control
either runs to completion, or to a point where it must wait
for an event to occur, for a needed resource to become
available, or until it is interrupted. Efficient use of the
computer can be obtained by using the time a task might
otherwise wait for an event to occur to run another task.
This switching from one task to another forms the basis of
multitasking. The result is the appearance of several tasks
being executed simultaneously.

 When several tasks can be competing for the resource
of execution time, the problem is to determine how to
grant it so that each gets access to the system in time to
perform its function. The solution is to assign a priority to
each task indicative of its relative importance to other
tasks in the system. Tasks which have a need to respond
rapidly to events are assigned high priorities. Those which
perform functions that are not time critical are assigned
lower priorities. MCX11 uses a fixed priority scheme in
which up to 126 tasks may be defined, while in the kernel
uC/OS, tasks have flexible priorities.

The kernel provides an environment whereby two or
more tasks can communicate with one another. The three
major ways in which this is done are through the
mechanisms of semaphore signaling, message
transmission, and queues. A semaphore is actually a flag
which contains information about the state of the
associated event. Any event which is used for task
synchronization will be associated with a particular
semaphore. The occurrence of a specific event can be
signaled by manipulating the semaphore associated with
that event.

 Message transmission involves the logical transfer of
data packets from one task to another. These data packets
are called messages. Messages are sent from one task and
placed in the mailbox of the receiving task in the order of
the priorities of the senders. Messages may be of any
format recognizable by the sender and receiver and data
may be passed in either direction. That is, it is possible for
two tasks to alternate the roles of sender and receiver.

 A third technique whereby two tasks can
communicate and synchronize is via a first-in-first-out
(FIFO) queuing mechanism. The queuing techniques
involve the physical transfer (copying) of data packets
from one task to another. Task synchronization due to
queuing operations is automatically performed by the

corresponding kernels.
 Every real-time kernel has a heart beat, which is

configured with an interval timer using a real time
interrupt clock as a peripheral device. The timer permits
task control on a timed basis. A generalized scheme using
one-shot and cyclic timers in conjunction with
semaphores is provided. The kernel efficiently manages
multiple timers using an ordered linked list of pending
timer events. A timer for an event is inserted into the
linked list in accordance with its duration. Directives for
scheduling and canceling timed events are an integral part
of the kernel.

 Support for a generalized interrupt service scheme is
provided within the kernels.

APPLICATION OF THE KERNELS
The following is applications of the real-time kernels,

uC/OS and MCX11, on the micro-controller M68HC11.
uC/OS is a real-time, multitasking, preemptive kernel,

which has the following advantages:
• manage up to 63 tasks
• semaphore
• message mailbox and message queue
• priority-based task scheduler, with dynamic task

priorities
• clock tick
• can be ported to various micro-controllers, such as

those from Motorola, Intel, Hitachi and Zilog
It is quite easy to apply uC/OS in your own system. A

typical application includes:
• uC/OS kernel source code and C header file, which

incorporates data and routines critical to the whole
system.(filename: UCOS.C, UCOS.H) This part is
irrelevant to the type of micro-controller you applied.
So in simple application, no much attention needs to
be paid here. You just compile the code together
with those closely related to your control target.

• UC/OS hardware-related code, in both C and
assembly, which is also a part of the kernel. At the
first time you apply uC/OS to a micro-controller,
you need to check whether this section is compatible
to the hardware and instruction set of your controller.
(filename: UCOS11C.C, UCOS11C.H,
UCOS11A.ASM) For example, during the
preservation of context in a interrupt process, the
stack frame for different micro-controllers varies a
lot in their size, order of registers pushing into or
pulling out of the stack. A user has to make sure of
this so that your system will not crash when
accessing stack.

• Code developed by user. This section is target-
oriented code, where tasks stack, priority and entry
point are defined, kernel is initialized and then
started. So it is the entry point to start the whole
system. Just as C programming in DOS environment,
there should be a routine named

void main()
In you code.

The following code list is an example of this section:
#include "includes.h"
#define TASK_STK_SIZE 500
UBYTE ExpStk[TASK_STK_SIZE];
UBYTE ExpData;
UBYTE Exp1Stk[TASK_STK_SIZE];
UBYTE Exp2Stk[TASK_STK_SIZE];
UBYTE Exp3Stk[TASK_STK_SIZE];
char string[]="Test string";
void Exp(void *UBYTE);
void Exp1(void *UBYTE);
void Exp2(void *UBYTE);
OS_EVENT *Sema;
void main()
{ OSInit();
 OSTaskCreate(Exp, (void *)ExpData,

(void*)&ExpStk[TASK_STK_SIZE],10);
 OSTaskCreate(Exp1, (void *)ExpData, (void

*)&Exp1Stk[TASK_STK_SIZE],20);
 OSTaskCreate(Exp2, (void *)ExpData, (void

*)&Exp2Stk[TASK_STK_SIZE],1);
 Sema=OSSemCreate(0);
 OSStart();
}
void Exp(void *data)
{ while(1){
 printf("\n\tTask Exp1 Running! ");
 OSTimeDly(60);
 }}
void Exp1(void *data)
{ while(1){

OSSemPost(Sema);
 printf("\n\tTask Exp2 Running! ");
 OSTimeDly(60);
 }}
void Exp2(void *data)
{ ULONG clk;
 UBYTE err;
 while(1){

OSSemPend(Sema, 0, &err);
clk=OSTimeGet();

 printf("\n\t%i ", clk);
 }}

MCX11 is a real-time, multitasking, preemptive
kernel, which has the following advantages:
• manage up to 128 tasks
• semaphore
• message mailbox and message queue
• priority-based task scheduler, with fixed task

priorities
• clock tick
• can only be used on Motorola micro-controller

M68HC11
A typical application of MCX11 includes(please

compare to the section description of uC/OS):
• MCX11 kernel source code. which incorporates data

and routines critical to the whole system.(filename:
MCX.ASM, SYSTEM.ASM) In simple application,
no much attention needs to be paid here. You just
compile the code together with those closely related
to your control target.

• Code highly related to MCX11 kernel. In this section,
the user can define tasks’ stack, priority and entry
point. And you also need to put the ISR here. Please
remember, all the ISR routines should return to a
common entry into MCX11 kernel for the system to
perform semaphore signaling and task scheduling, if

necessary. (filename: TASKDEF.ASM, ISR.ASM)
Here is an example on how to write code to define
tasks:
TASK2 equ STATLS+TCBLEN *Task 2 TCB addr
STAK2 equ STKBASE-60 *Addr of task 2 stack
STK2SIZ equ 60 *Size of stack for task 2

FCB 0 *INITST is RUN
FDB initial,STAK2,TASK2

*STRTADR,RSTSP,TCBADDR

TASK3 equ TASK2+TCBLEN *Task 3 TCB addr
STAK3 equ STAK2-STK2SIZ *Addr of task 3 stack
STK3SIZ equ 60 *Stack size for task 3
 FCB 0 *INITST is RUN

FDB read_cmd,STAK3,TASK3
*STRTADR,RSTSP,TCBADDR

…
All the tasks are list in the order that their priorities
descend. And in a code block for one task, the entry
point(such as “initial” and “read”), stack size and
TCB(task control block) address is defined or
allocated.

• Code to implement the task routines. Normally,
every task should be defined as a dead-loop, with
waiting on a condition and perform of some
functions. Then it is left to the kernel to schedule all
these tasks. Finally, a jump to the entry point of the
MCX11 kernel initialization will start the whole
system.

A environment monitor system has been developed
with MCX11. Here 8 tasks as included, which are
appointed to maintain devices such as keyboard, displayer,
RS-232 communication port, or to perform time-related
functions as periodical data acquisition, dose rate
calculation. It is much more convenient to have such
kernel in your system, because it help promote our
software development, and the whole system has less
bugs than those developed under the old, unsystematic,
single thread scheme.

However, there really lie deficiencies. Since very few
debug tools exist for the development, using such kernel
requires the user to have deep understanding of real-time
system and the specific kernel. This is sometimes not that
pleasing. But it is inevitable since we have chosen a free
one.

REFERENCES
[1] Jean J. Labrosse, “uC/OS The Real-Time Kernel” ,

R&D Publications, August 1993
[2] A.T. Barrett & Associates, “MicroController

eXecutive for the Motorola MC68HC11”, Version
1.3, Motorola Inc., April 1990

	TopPage
	Paper Index
	Author Index

