LABORATORY DATA COMPRESSION

M. Emoto, M. Shoji, S. Yamaguchi, NIFS, Toki, 509-5292 Japan
J. Kariya, Yamaguchi University, Ube, 755-8611 Japan
H. Okumurg“ Matsusaka University, Matsusaka, 515-8511 Japan
M. Tamura, Nihon Sun Microsystems, Tokyo, 158-8633 Japan
Y. Teramachi, University of Industrial Technology, Sagamihara, 229-1196 Japan

Abstract The aim of the compression library is to save local stor-

Most of the existing tools for lossless data compressior‘;’1ge and (hopefully) reduce network latency and traffic. The

including LHA, Zip, gzip, andbzip2 are based on either design requirements are low complexity (high throughput)

textual substitution (LZ77 or LZ78) or block sorting, fol- and delayless transmission of compressed data. This lat-

. ter requirement precludes block-oriented tools suchips
lowed by entropy coding. These tools assume that the in, LHA, andbzip2

data have clear 8-bit boundaries and contain many repe%g
tive substrings. Laboratory data such as A/D converter out-
puts, however, does not in general satisfy these conditions. 2 ALGORITHM

To compress such data, we developed a general-purpoggs algorithm is based on a simplified length-limited
real-time compression library suitable for quantized (Up sinimum-redundancy (Huffman) coding of adaptive pre-
16-bit) time-series data of unlimited number of channelyiciion residuals. Since at each sampled time we just loop
The first part of the algorithm adaptively chooses a prediGsyer the channel index, henceforth we suppress channel in-
tion model among a family of polynomials, and estimategjices and pretend as if there were only one channel, and let
the variance of the prediction residuals. The second pagt represent the quantized (integer) datum for the discrete
of the algorithm encodes the residuals by length-limite@nteger) timet.

minimum-redundancy coding, assuming either Gaussian or ot each timet, we predict the value; on the basis of
Laplace distributions. The library is used by our Java-bas%st few samples by one of the three extrapolations

data management system developed for the National Insti-

tute for Fusion Science (NIFS). It can also be used as a g0 — x_, previous value
standalone compression tool. Typical compression ratio) _
is around 4 : 1, and compression/decompression through-% =~ = 2¢-1—X%-2 linear extrapolation

puts are arou_nd 2-million 16_—bit s_,amples per second on a ;(t(Z) —3%_1-3%_2+%_3 quadratic extrapolation
400MHz Pentium-1l PC running Linux.
that best fits the local nature of the time series, as will be

1 INTRODUCTION explained below. The prediction error

The NIFS collaboration on “workstation-based data ac- §=%X—X

uisition, analysis, and control systems” was started in . . : :
g y y IS assumed to obey discretized versions of either the Gaus-

1993 [1], and in 1996-1998 culminated in the construc-, | the Laol " ided tiah di
tion of a Java-based data management system for the La %n _(norma_) or the Laplace (two-side exponen ""}) IS-
tributions with zero mean and slowly changing variance.

Helical Device (LHD) at NIFS. :) o
elical Device ()2 More precisely,e is assumed to be distributed ¥ +

A short description of the monitoring subsystem is irb 5| — [X+0.5], whereX andY are two random (undis-

ordef: Sensors attached to the reactor and the SuDerfetized) variables such that — |X| is uniformly dis-
conducting coils measure quantities such as temperatur nsbuted over0, 1) andY — X is either Gaussian or{a lace
pressures, strains, voltages, and currents. Outputs frothh 2610 mea’n P

these sensors are amplified, low-pass-filtered, digitized by Typical laboratory time-series data are not stationary; it

“oversampling” A/D converters, and fed into workstations . .
Pling hE y move wildly, then calm down for an extended time

where the software averages the oversampled data downm erval. For such data it is necessary to estimate variance
the specified rates and eliminates random noise. The avr-1 the t;asis of a small number of recgnt sample points. We
eraged data are stored locally and sent on the network % piep ’

clients. The client software consists of Java applets thHP® the quantity
run within a Web browser. z=|a_ 16|+ @ 15|+ -+ |a 2| +|a_1|

* E-mail: okumura@matsusaka-u.ac.jp . . .
1The overall system and Java 3D visualization are discussed elsewh&Pd the basis of this value, we construct 16 canonical Huff-

in this Conference [2, 3]. man codewords, corresponding to 16 intervals,athown

mailto:okumura@matsusaka-u.ac.jp

Table 1: 16 groups for prediction errors

Group Number

Number of bits
that follow

+8

+16,

- UIARWNRO
H,
>

14 +8192,.
+16

.., £15
..., 131

H,
~
A WNRO

.., +16383 14
384, .. 15 (16)

Table 2: Exceptions to Table 1.

Value

codeword

+32767
End-Of-Data

1111111111111110
1111111111111111
0111111111111110
01111111211111111

Table 3: Length-limited minimum redundancy code for

Gaussian distribution

&1 +---+ & 14

@
~

i

o

0-9
10-17
18-23
24-31
32-37
38-56
57-66
67-100

101-114
115-138
139-190
191-230
231-310
311-438
439-623
624-879
880-1249
1250-1762
1763-2502
2503-3526
3527-5007
5008-7055

in Table 1, with lengths given by either Table 3 or Table 4.
Given g, we output one of these codewords that corre-
sponds to the group to whioh belongs (by looking up
Table 1, with some exceptions given by Table 2), then out-
put a fixed number of bits that specifies the positiorgof
among the values within the same group.

The variable-length minimum redundancy codes for the
16 groups are carefully determined by numeical calculation

assuming Gaussian (Table 3) and Laplace (Table 4) distifable 4: Length-limited minimum redundancy code for
Laplace distribution

butions.

For example, ifz= 400 andg = 27, we construct the
canonical Huffman code with codeword lengths given by
the 14th row of Table 3 (or Table 4). Sineg= 27 be-
longs to group 5 of Table 1, we output the variable-length
codeword whose length & = 2 bits. Next, we output the
5-bit position of the number 27 within this group. To be
concrete, the bit pattern of 27 is ‘11011, but since every
number between 16 and 31 are 5-bit numbers with the left-
most bit ‘1’, we can omit the leftmost bit and instead insert
the sign bit. That is, the positive number 27 will be en-
coded as ‘01011’ whereas the negative numb2¥ would
be ‘11011".

A more precise description of the overall compression
algorithm is as follows. As above, we suppress the obvious
indices for the channel number over which we loop. Each
time ¢ = 0,1,2,...) the encoder receives a new datam
we calculate three prediction errdts:

0)

e® =x- Xprev

oD

=e0 eé?)ev
e — gl _ eﬁ)ev

that correspond to the aforementioned three extrapolations,

2Unused variables are initialized to zero.

7056-10018
10019-14113
14114-20040
20041-28229
28230-40084
40085-56460
56461-80172
80173-112829

112830-149277
149278-205656
205657—

NNNRRNWW
NRONWADMND
NWAOOOON|
o2 Yo BNENENENEN|
00 00 00 00 00 0o 00 X
00 00 00 00 00 0o 00 X
00 00 00 00 00 0o 0o X
I\ L0 U100 00 00 60 0 G GO GO GO GO 00 00 00 00 00 00 00 00 0 00 O o 55 0 0 GO GO 00 OO

wwNNI\JI\JNoocnoo

< NNNN N L U100 00 0000 00 00 0O 0O 00 00 00 OO CO 0O 0O 00 00
D NN N L U100 00 00 00 00 0 00 00 00 00 00 00 OO 0O B0 CO 0O 0O CO

Ahwbhwwnr
WNNNNR RN
~~~ooooN|:
~~~ooooN|;
00 00 00 00 00 00 0o 3O
00 00 00 00 00 0O 0o OO
00 00 00 00 00 0O 00 OO

000000000000 00000000V~
0000000000000 A DWS
O 0000000000000 NRDDODNUTWRWWN
0000000000000 UTWWWNINNN
0000000000 RUTWWWNNNNNN
000N RUTITWWWNNNNNWANOOD
S 0O RUTIWWWNNNNNWIIOONOO
RNOOOOAUTIWWWNNNNN W UT00 0000 0o 000000
~NOODROTWWWNININNN W U100 00 00 0000 00 00 0o 0O
S UWWWNNNNN LW UT0000 0000 0o 0o 00 0000000000 o

(o]
|

00000000 UTWWWNNNNNN WA
T ORUCIWOLWLWNNNNN W U100 00 00 0o 0o 000000 0000 0o

c
~
©°
c
~
=
Q
=
<
QD

&1 +---+ & 14

~
@
~
i
o

0-13
14-22
23-37
38-60
61-75
76-99

100-163
164-203
204-301
302-397
398-451
452-608
609-794
795-910
911-1216
1217-1584
1585-1820
1821-2432
2433-3169
3170-3641
3642-4865
4866-6816
6817-9730
9731-13633
13634-19461
19462-27266
27267-38921
38922-54498
54499-77220
77221-103705
103706-154498
154499-207725
207726—

00 00 00 00 00 0

00000000 00O MO POO~NNDDDUTTTDR I (5 K (o poR =
000000 AW PEONNDDDDDUTR R RW 1m0 N N
eceYecloctefeclecete oI ENENTS Yot o e Yo YO FNNNE, NS N A TA T N R s
OEEDEPDN~NDDODUIRBRCIRBRWWWWNN SN N oS
CEEEPEONNDDDUTRRUIRROWWWWNNNN WAL oD
WEPEONNDDDUTRCTARWWWWWNNNNNWW N 5 oo~
CO~NNOOOUTRUTARWWWWWNRNNNNNWWAD G | <ol -

S ONOORURUTRWWWWNNNNNNWWAROUI® 6~ o|:

0000 00 00 00 0O
~NORUTRWWWNNRNNNW WA A G~~~ 00000000 % 65 0 00 0o 0
00 W LI NININI N G GO 3>~ 00 00 00 00 00 G0 6 00 00 B0 00 80 00) 4 op 00 G OO
L WNINININ LY W 4 53 00 00 00 00 00 G0 B0 00 G0 6 00 00 B0 00 80 00) 4 op 00 G 0O
N RO NN G - §> 00 00 00 00 00 00 00 G0 B 00 80 6 00 00 00 00 80 00) 4 0p 00 G OO

@ NN W G - G 00 00 00 00 00 00 00 00 G0 G0 B0 00 00 00 G0 80 00 B0 00 00 %) 40 40 0 b 0O
N\ &0 - 3> 00 00 00 00 00 00 00 00 00 00 G0 00 00 00 00 00 00 00 80 80 00 0 1 40 4o 6o 0D 0O

RNOOUIRAUIARWWWNNNNNNWWA SOY0000 000000

»
lelm-bAQ)OOOONNNI\)OOQ)A-PQ\IOOOOOOOOOOOOOOOOOOOO

O
c
~
©°
c
~+
=
Q
=
<
Q
c

and determinel according to the channels are compressed {18-1/2 of the original

size.
¥ (if SO < s) Table 5 shows the compressed sizes and execution
d=<eb (if §9 > s <) speeds of our standalone compression tufsig and two
e? (otherwise) popular toolsZip and LHA for two representative labora-
tory files (405-channel 16-bit data as described above), on
We also determing according to a 400MHz Pentium-II PC running Linux.
s (if SO < sb) _ _
2=V (if §9 > ¢V < 52) Table 5: Comparison of compressed sizes and compres-

sion/decompression wall-clock timesmifsgand two pop-

5 :
s® (otherwise) ular compression tools.

We then look up the code table corresponding,tand

Size Comp. Decomp.

encoded. . (bytes) (secs) (secs)
Finally, with p=t mod 16, we update the variables by —Fe563 8743652

©) {0 _ 40) Zip 4794261 6.31 1.29

s¥ sV —dp” +e”] LHA 4769586 9.19 1.86

s — 0 g 4 e Gaussian 2003136

D D nfSd aplace 2000022 22 204
$7 7 —dp” +e”] File-318 18566522
and Zip 9822477 14.56 2.70
LHA 9807894 19.94 3.92
0 1 2 H
dy) — (e, dp —[eM], o —[e?)] nifsg Coussian 3950081 404 438
) 0 1) & Laplace 3958382
Crev<— €, Eprev< €
40 Although the current version afifsq(and its library ver-

sion nifsqlib) is not sufficiently optimized for speetiit is
sufficiently fast, and compresses better.

We conclude that we succeeded in constructing a com-
pression tool/library suitable for online compression of lab-
oratory data (raw A/D converter outputs, to be more ex-
act). Its compression is tighter and faster than currently-
available popular tools.

The source code is available at http://www.matsusaka-
u.ac.jp/"okumura/nifsq/.

REFERENCES

[1] H. Okumuraet al, “A Scalable Data Acquisition System for

Superconducting Coil Experiment”, K. Herschbach, W. Mau-
Moo o FIL 0o rer, J.E. Vetter (editorsFusion Technology 1994: Proceed-
Qbps 1bps 2bps 3ps 4bps Sops Gbps 7bps Bbps Sbps 10bps 1ibps 12bps ings of the 18th Symposium on Fusion Technology, Karl-

sruhe, Germany, 22—-26 August 1984sevier Science, 1995.
Figure 1: Histogram of compression performances PP-835-838.
(bits/sample) for 1620 net channels (405 channelgl [2] J. Kariyaet al, “Java Based Data Monitoring and Manage-
files), assuming Gaussian distribution. (The histogram for ment System for LHD”, PCaPAC’99, KEK, Jan. 1999.
Laplace distribution is almost identical.) Ordinate: com{3] M. Emoto et al, “Interactive Data Visualization with Java
pression (bits/sample), Abscissa: number of net channels. 3D”, PCaPAC’99, KEK, Jan. 1999.

3 PERFORMANCE AND CONCLUSION

Figure 1 shows the histogram of compressed sizes (bits/

sample) of 1620 net channels for randomly chosen four

|5!b0rat0ry files each containing 405 channels of raw 16- 30yr code is entirely written in C, whereip andgzipuse assembly-
bit A/D converter outputs. It can be seen that almost all dénguage code for86 platforms.

	TopPage
	Paper Index
	Author Index

