
LABORATORY DATA COMPRESSION

M. Emoto, M. Shoji, S. Yamaguchi, NIFS, Toki, 509-5292 Japan
J. Kariya, Yamaguchi University, Ube, 755-8611 Japan

H. Okumura,∗ Matsusaka University, Matsusaka, 515-8511 Japan
M. Tamura, Nihon Sun Microsystems, Tokyo, 158-8633 Japan

Y. Teramachi, University of Industrial Technology, Sagamihara, 229-1196 Japan

Abstract

Most of the existing tools for lossless data compression,
including LHA, Zip, gzip, andbzip2, are based on either
textual substitution (LZ77 or LZ78) or block sorting, fol-
lowed by entropy coding. These tools assume that the
data have clear 8-bit boundaries and contain many repeti-
tive substrings. Laboratory data such as A/D converter out-
puts, however, does not in general satisfy these conditions.
To compress such data, we developed a general-purpose
real-time compression library suitable for quantized (up to
16-bit) time-series data of unlimited number of channels.
The first part of the algorithm adaptively chooses a predic-
tion model among a family of polynomials, and estimates
the variance of the prediction residuals. The second part
of the algorithm encodes the residuals by length-limited
minimum-redundancy coding, assuming either Gaussian or
Laplace distributions. The library is used by our Java-based
data management system developed for the National Insti-
tute for Fusion Science (NIFS). It can also be used as a
standalone compression tool. Typical compression ratio
is around 4 : 1, and compression/decompression through-
puts are around 2-million 16-bit samples per second on a
400MHz Pentium-II PC running Linux.

1 INTRODUCTION

The NIFS collaboration on “workstation-based data ac-
quisition, analysis, and control systems” was started in
1993 [1], and in 1996–1998 culminated in the construc-
tion of a Java-based data management system for the Large
Helical Device (LHD) at NIFS.

A short description of the monitoring subsystem is in
order1: Sensors attached to the reactor and the super-
conducting coils measure quantities such as temperatures,
pressures, strains, voltages, and currents. Outputs from
these sensors are amplified, low-pass-filtered, digitized by
“oversampling” A/D converters, and fed into workstations,
where the software averages the oversampled data down to
the specified rates and eliminates random noise. The av-
eraged data are stored locally and sent on the network to
clients. The client software consists of Java applets that
run within a Web browser.

∗ E-mail: okumura@matsusaka-u.ac.jp
1The overall system and Java 3D visualization are discussed elsewhere

in this Conference [2, 3].

The aim of the compression library is to save local stor-
age and (hopefully) reduce network latency and traffic. The
design requirements are low complexity (high throughput)
and delayless transmission of compressed data. This lat-
ter requirement precludes block-oriented tools such asZip,
gzip, LHA, andbzip2.

2 ALGORITHM

The algorithm is based on a simplified length-limited
minimum-redundancy (Huffman) coding of adaptive pre-
diction residuals. Since at each sampled time we just loop
over the channel index, henceforth we suppress channel in-
dices and pretend as if there were only one channel, and let
xt represent the quantized (integer) datum for the discrete
(integer) timet.

At each timet, we predict the valuext on the basis of
past few samples by one of the three extrapolations

x̂(0)
t = xt−1 previous value

x̂(1)
t = 2xt−1−xt−2 linear extrapolation

x̂(2)
t = 3xt−1−3xt−2+xt−3 quadratic extrapolation

that best fits the local nature of the time series, as will be
explained below. The prediction error

et = xt − x̂t

is assumed to obey discretized versions of either the Gaus-
sian (normal) or the Laplace (two-sided exponential) dis-
tributions with zero mean and slowly changing variance.
More precisely,et is assumed to be distributed asbY +
0.5c− bX + 0.5c, whereX andY are two random (undis-
cretized) variables such thatX − bXc is uniformly dis-
tributed over[0,1) andY−X is either Gaussian or Laplace
with zero mean.

Typical laboratory time-series data are not stationary; it
may move wildly, then calm down for an extended time
interval. For such data it is necessary to estimate variance
on the basis of a small number of recent sample points. We
use the quantity

z= |et−16|+ |et−15|+ · · ·+ |et−2|+ |et−1|
On the basis of this value, we construct 16 canonical Huff-
man codewords, corresponding to 16 intervals ofet shown

mailto:okumura@matsusaka-u.ac.jp

Table 1: 16 groups for prediction errors

Group Number et
Number of bits

that follow
0 0 0
1 ±1 1
2 ±2,±3 2
3 ±4, . . . ,±7 3
4 ±8, . . . ,±15 4
5 ±16, . . . ,±31 5
...

...
...

14 ±8192,. . . ,±16383 14
15 ±16384,. . . 15 (16)

Table 2: Exceptions to Table 1.

Value codeword
−32767 1111111111111110
−32768 1111111111111111
+32767 0111111111111110

End-Of-Data 0111111111111111

in Table 1, with lengths given by either Table 3 or Table 4.
Given et , we output one of these codewords that corre-
sponds to the group to whichet belongs (by looking up
Table 1, with some exceptions given by Table 2), then out-
put a fixed number of bits that specifies the position ofet

among the values within the same group.
The variable-length minimum redundancy codes for the

16 groups are carefully determined by numeical calculation
assuming Gaussian (Table 3) and Laplace (Table 4) distri-
butions.

For example, ifz = 400 andet = 27, we construct the
canonical Huffman code with codeword lengths given by
the 14th row of Table 3 (or Table 4). Sinceet = 27 be-
longs to group 5 of Table 1, we output the variable-length
codeword whose length is̀5 = 2 bits. Next, we output the
5-bit position of the number 27 within this group. To be
concrete, the bit pattern of 27 is ‘11011’, but since every
number between 16 and 31 are 5-bit numbers with the left-
most bit ‘1’, we can omit the leftmost bit and instead insert
the sign bit. That is, the positive number 27 will be en-
coded as ‘01011’ whereas the negative number−27 would
be ‘11011’.

A more precise description of the overall compression
algorithm is as follows. As above, we suppress the obvious
indices for the channel number over which we loop. Each
time (t = 0,1,2, . . .) the encoder receives a new datumx,
we calculate three prediction errors:2

e(0) = x−xprev

e(1) = e(0)−e(0)
prev

e(2) = e(1)−e(1)
prev

that correspond to the aforementioned three extrapolations,

2Unused variables are initialized to zero.

Table 3: Length-limited minimum redundancy code for
Gaussian distribution

|et−1|+ · · ·+ |et−16| `0, . . . , `15
0–9 1 2 3 4 7 7 7 7 8 8 8 8 8 8 8 8

10–17 2 1 3 4 6 7 8 8 8 8 8 8 8 8 8 8
18–23 3 1 2 4 6 7 8 8 8 8 8 8 8 8 8 8
24–31 3 2 1 4 6 7 8 8 8 8 8 8 8 8 8 8
32–37 4 2 1 3 6 7 8 8 8 8 8 8 8 8 8 8
38–56 3 2 2 2 4 6 7 7 8 8 8 8 8 8 8 8
57–66 4 2 2 2 3 6 7 7 8 8 8 8 8 8 8 8
67–100 4 3 2 2 2 6 7 7 8 8 8 8 8 8 8 8

101–114 4 4 2 2 2 4 6 6 8 8 8 8 8 8 8 8
115–138 4 3 3 2 2 3 6 6 8 8 8 8 8 8 8 8
139–190 6 4 3 2 2 2 7 7 8 8 8 8 8 8 8 8
191–230 6 4 4 2 2 2 4 6 8 8 8 8 8 8 8 8
231–310 6 4 3 3 2 2 3 6 8 8 8 8 8 8 8 8
311–438 6 6 5 3 2 2 2 5 8 8 8 8 8 8 8 8
439–623 6 6 4 3 3 2 2 3 8 8 8 8 8 8 8 8
624–879 8 6 6 5 3 2 2 2 5 8 8 8 8 8 8 8
880–1249 8 6 6 4 3 3 2 2 3 8 8 8 8 8 8 8

1250–1762 8 8 6 6 5 3 2 2 2 5 8 8 8 8 8 8
1763–2502 8 8 6 6 4 3 3 2 2 3 8 8 8 8 8 8
2503–3526 8 8 8 6 6 5 3 2 2 2 5 8 8 8 8 8
3527–5007 8 8 8 6 6 4 3 3 2 2 3 8 8 8 8 8
5008–7055 8 8 8 8 6 6 5 3 2 2 2 5 8 8 8 8
7056–10018 8 8 8 8 6 6 4 3 3 2 2 3 8 8 8 8

10019–14113 8 8 8 8 8 6 6 5 3 2 2 2 5 8 8 8
14114–20040 8 8 8 8 8 6 6 4 3 3 2 2 3 8 8 8
20041–28229 8 8 8 8 8 8 6 6 5 3 2 2 2 5 8 8
28230–40084 8 8 8 8 8 8 6 6 4 3 3 2 2 3 8 8
40085–56460 8 8 8 8 8 8 8 6 6 5 3 2 2 2 5 8
56461–80172 8 8 8 8 8 8 8 6 6 4 3 3 2 2 3 8
80173–112829 8 8 8 8 8 8 8 8 6 6 5 3 2 2 2 5

112830–149277 8 8 8 8 8 8 8 8 6 6 4 3 3 2 2 3
149278–205656 8 8 8 8 8 8 8 8 7 7 6 4 3 2 2 2
205657– Output raw 16-bit value

Table 4: Length-limited minimum redundancy code for
Laplace distribution

|et−1|+ · · ·+ |et−16| `0, . . . , `15
0–13 1 2 3 4 6 7 8 8 8 8 8 8 8 8 8 8

14–22 2 1 3 4 6 7 8 8 8 8 8 8 8 8 8 8
23–37 2 2 2 3 4 6 7 7 8 8 8 8 8 8 8 8
38–60 3 2 2 2 4 6 7 7 8 8 8 8 8 8 8 8
61–75 4 2 2 2 3 6 7 7 8 8 8 8 8 8 8 8
76–99 3 3 2 2 3 4 6 6 8 8 8 8 8 8 8 8

100–163 4 3 3 2 2 3 6 6 8 8 8 8 8 8 8 8
164–203 4 4 3 2 2 3 4 5 8 8 8 8 8 8 8 8
204–301 6 4 3 3 2 2 3 6 8 8 8 8 8 8 8 8
302–397 5 4 4 3 2 2 3 4 8 8 8 8 8 8 8 8
398–451 5 4 4 3 3 2 2 4 8 8 8 8 8 8 8 8
452–608 6 5 5 3 3 2 2 3 6 7 8 8 8 8 8 8
609–794 6 6 4 4 3 2 2 3 4 7 8 8 8 8 8 8
795–910 6 6 4 4 3 3 2 2 4 7 8 8 8 8 8 8
911–1216 7 6 5 5 3 3 2 2 3 6 8 8 8 8 8 8

1217–1584 7 6 6 4 4 3 2 2 3 4 8 8 8 8 8 8
1585–1820 8 6 6 4 4 3 3 2 2 4 7 8 8 8 8 8
1821–2432 8 7 6 5 5 3 3 2 2 3 6 8 8 8 8 8
2433–3169 8 7 6 6 4 4 3 2 2 3 4 8 8 8 8 8
3170–3641 8 8 6 6 4 4 3 3 2 2 4 7 8 8 8 8
3642–4865 8 8 7 6 5 5 3 3 2 2 3 6 8 8 8 8
4866–6816 8 8 7 6 6 4 4 3 2 2 3 4 8 8 8 8
6817–9730 8 8 8 7 6 5 5 3 3 2 2 3 6 8 8 8
9731–13633 8 8 8 7 6 6 4 4 3 2 2 3 4 8 8 8

13634–19461 8 8 8 8 7 6 5 5 3 3 2 2 3 6 8 8
19462–27266 8 8 8 8 7 6 6 4 4 3 2 2 3 4 8 8
27267–38921 8 8 8 8 8 7 6 5 5 3 3 2 2 3 6 8
38922–54498 8 8 8 8 8 7 6 6 4 4 3 2 2 3 4 8
54499–77220 8 8 8 8 8 8 7 6 5 5 3 3 2 2 3 6
77221–103705 8 8 8 8 8 8 7 6 6 4 4 3 2 2 3 4

103706–154498 8 8 8 8 8 8 8 8 6 6 4 3 3 2 2 3
154499–207725 8 8 8 8 8 8 8 8 7 7 6 4 3 2 2 2
207726– Output raw 16-bit value

and determined according to

d =




e(0) (if s(0) ≤ s(1))

e(1) (if s(0) > s(1) ≤ s(2))

e(2) (otherwise)

We also determinezaccording to

z=




s(0) (if s(0) ≤ s(1))

s(1) (if s(0) > s(1) ≤ s(2))

s(2) (otherwise)

We then look up the code table corresponding toz, and
encoded.

Finally, with p = t mod 16, we update the variables by

s(0)← s(0)−d(0)
p + |e(0)|

s(1)← s(1)−d(1)
p + |e(1)|

s(2)← s(2)−d(2)
p + |e(2)|

and

d(0)
p ← |e(0)|, d(1)

p ← |e(1)|, d(2)
p ← |e(2)|

e(0)
prev← e(0), e(1)

prev← e(1)

0bps 1bps 2bps 3bps 4bps 5bps 6bps 7bps 8bps 9bps 10bps 11bps 12bps
0

40

Figure 1: Histogram of compression performances
(bits/sample) for 1620 net channels (405 channels× 4
files), assuming Gaussian distribution. (The histogram for
Laplace distribution is almost identical.) Ordinate: com-
pression (bits/sample), Abscissa: number of net channels.

3 PERFORMANCE AND CONCLUSION

Figure 1 shows the histogram of compressed sizes (bits/
sample) of 1620 net channels for randomly chosen four
laboratory files each containing 405 channels of raw 16-
bit A/D converter outputs. It can be seen that almost all of

the channels are compressed to 1/16–1/2 of the original
size.

Table 5 shows the compressed sizes and execution
speeds of our standalone compression toolnifsq and two
popular toolsZip andLHA for two representative labora-
tory files (405-channel 16-bit data as described above), on
a 400MHz Pentium-II PC running Linux.

Table 5: Comparison of compressed sizes and compres-
sion/decompression wall-clock times ofnifsqand two pop-
ular compression tools.

Size Comp. Decomp.
(bytes) (secs) (secs)

File-263 8743652
Zip 4794261 6.31 1.29
LHA 4769586 9.19 1.86

nifsq
Gaussian 2003136
Laplace 2000022

2.25 2.04

File-318 18566522
Zip 9822477 14.56 2.70
LHA 9807894 19.94 3.92

nifsq
Gaussian 3956084
Laplace 3958382

4.94 4.38

Although the current version ofnifsq(and its library ver-
sion nifsqlib) is not sufficiently optimized for speed,3 it is
sufficiently fast, and compresses better.

We conclude that we succeeded in constructing a com-
pression tool/library suitable for online compression of lab-
oratory data (raw A/D converter outputs, to be more ex-
act). Its compression is tighter and faster than currently-
available popular tools.

The source code is available at http://www.matsusaka-
u.ac.jp/˜okumura/nifsq/.

REFERENCES

[1] H. Okumuraet al, “A Scalable Data Acquisition System for
Superconducting Coil Experiment”, K. Herschbach, W. Mau-
rer, J.E. Vetter (editors),Fusion Technology 1994: Proceed-
ings of the 18th Symposium on Fusion Technology, Karl-
sruhe, Germany, 22–26 August 1994, Elsevier Science, 1995.
pp. 835–838.

[2] J. Kariya et al, “Java Based Data Monitoring and Manage-
ment System for LHD”, PCaPAC’99, KEK, Jan. 1999.

[3] M. Emoto et al, “Interactive Data Visualization with Java
3D”, PCaPAC’99, KEK, Jan. 1999.

3Our code is entirely written in C, whereasZip andgzipuse assembly-
language code forx86platforms.

	TopPage
	Paper Index
	Author Index

