
CAN JAVA REPLACE C++ ON WINDOWS FOR
ACCELERATOR CONTROLS? *

H. Nishimura, LBNL, U. C. Berkeley, Berkeley, CA 94720 USA

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Sciences Division,
U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.

Abstract
We discuss the possibilities of using Java instead of C++
for accelerator modeling, simulation and controls,
covering the items of run-time performance, availability
of numerical libraries, migration from C/C++, link to C++
routines, and distributed objects. We will be presenting
Java class libraries for modeling and simulation studies,
on-line device access and operation at ALS on Windows
NT 4.0.

I. Java and Accelerator Control Systems

1-1. Platform Homogeneity

Portability was not an issue of accelerator control systems
in their design phase. They were always made
homogeneous as far as the platforms were concerned.
Diversity was introduced as a result of painful evolution
over time. Once the systems became heterogeneous,
portability then becomes an issue of accelerator control
systems. It is being recognized as a key to keep the
systems flexible enough to catch up with the rapid
progress of computer technologies.

Generally speaking, Windows NT is superceding
Unix workstations in various fields. Although accelerator
controls systems are conservative, accelerator control
systems will be adopting Windows NT for better
performance at lower cost. Therefore we must figure out
how to manage diversity in a Windows NT-dominant
system.

When a platform evolves in its own way, it is not a
trivial task to ensure portability. In the case of Windows,
it has been adopting very novel technologies more rapidly
than any other platform paying almost no attention to the
portability.

On the other hand, portability is almost everything for
Java. Our discussion here is to investigate the feasibility
of adopting Java to recover the portability when we use
Windows NT as our primary platform.

1-2. Applet and Application

Java has been in our sight only for a few years and has
already established its identity with the emerging boom of
the Internet. However, it has been almost exclusively used
for creating Applets that have strong restrictions to access

computer resources for security reasons. Therefore, the
power of Java has not yet been fully utilized. It is only
recently that we started using Java to create application
programs. Java is becoming a candidate to replace C++.

1-3. Portability and Its Cost

The merit of using Java is portability on multiple
platforms. On the other hand, the price can be slower
execution speed. In addition, it requires learning of both
the language and the libraries. Cost of training should not
be underestimated. The issue is how to evaluate, balance
and compromise these merit and demerit. We will discuss
them in the next three chapters.

II. Portability

Portability is usually understood to be an ability of a
program to run on multiple platforms. This definition
might be fine for most of the cases, but we distinguish two
kinds of portability: (1) portability at run time, and (2)
portability at development-time. Then we discuss a third
item: (3) portability over time.

2-1. Portability at Run Time.

Portability at run time is achieved by a Java byte code and
the run-time environment that is a combination of a Java
Virtual Machine (JVM) and a standard set of libraries.
Java is practically the only solution available today to
create portable programs with graphical user interface
(GUI) and can be very suitable for control system
programs on consoles.

On the other hand, it is important to realize that the
Java language is not a part of the run-time portability. Any
programming language can be accepted if it produces a
byte code that can run on the run-time environment of
Java, and we have already seen several examples [1].

It should be also noted that the portability of Java is
not unconditionally desirable for industry. For example,
unmanaged run-time portability may not be appropriate
for copyright issue. In addition, it is easy to reconstruct a
Java source code from a byte code by using a decompiler.
That means that a Java source code is not secured. These
problems will be obstacles for industry to adopt Java to
replace C++.

2-2. Portability at Development Time.

The development-time portability is for developers
creating a run-time image for a given platform. The image
can be platform-specific. We can take it a kind of cross-
platform development capability that is not specific to
Java. A good example is CodeWarrior Compiler [2] that
supports multiple target platforms.

2-3. Portability over Time

If we are designing the system from scratch, portability is
not a current issue. Instead, portability in the future
becomes more important. That is, portability should be
taken in the time axis as continuous availability over time.
Therefore, it is important to carefully observe where the
industries are moving and pick up a solution that is
expected to survive for a reasonable period. In this
context, Java seems to be the only solution for portability.

III. Performance

As Java uses an interpreter, and not a native compiler at
run time, it is thought that Java executes much slower than
native programs. The situation is improving due to the
following two items: (1) new technologies for JVM, and
(2) native Java compilers.

At the same time, it should be noted that the
execution speed has not been an issue of the accelerator
controls software at a level where Java would be adopted.

3.1 New technologies for JVM

Just-In-Time compiler (JIT) technology has improved the
execution speed of JVM and that it rivals with the
performance of native compilers. Our recent experience
shows the cases where JIT supercedes the speed of a
native code.

3.2 Native Compilers for Java

There are several kinds of native compilers of Java
already available. The following is a list of Java
development environments on Windows NT that include
native Java compiles.

Symantec Visual Café for Java [3a]
Asymetrix SuperCede [3b]
Microsoft Visual J++ [3c]
IBM VisualAge for Java [3d]
Tower Technology TowerJ [3e]

The last two also support other platforms.
A native code is expected to run faster than JVM by

sacrificing the cross-platform portability. It brings a better
modularity of an executable image by linking libraries
together. For commercial developers, it guarantees source
code security by avoiding byte codes.

3.3 Numerical Calculation in Java

Although it is true that the execution speed is catching up
with C++, it does not necessarily mean that Java is
suitable for numerical calculations as pointed out by the
paper [4]. Here we only emphasize that a lack of a
standard numerical library is the most serious problem for
us using Java for numerical calculations. There should be
a basic set of standard mathematical libraries that cover
linear algebra, integration and differentiation, statistics,
equation solvers and optimization routines.

IV. Java and Other Languages

For practical software construction in Java, there is
always a need for using routines written in other
languages. (1) port at the source code level, or (2)
external calls by Java Native Interface (JNI).

4-1. Port at the Source Code Level.

Assuming that the legacy code is written in C++, it can be
a reasonable choice to port it at the source code level as
Java is very similar to C++. In such a case, the following
three items can be potential problems.

(a) Lack of operator overloading,
(b) Lack of default parameter values, and
(c) Lack of templates.

These problems are at the language specification level.
Libraries cannot solve them. Possible solutions can be:

(a) Preprocess to a portable Java source code.
(b) Compile to a portable Java byte code.

Several preprocessors are being developed and posted on
WEB[1]. One of the usable solutions that has been
available is to use the extended Java compiler, Jump [5],
which covers these features and produces a portable byte
code.

4-2. External Calls by JNI.

Since JDK 1.1, Java Native Interface (JNI) provides a
standardized way of linking Java to C++ routines. On
Windows, JNI is a standard way of calling a dynamic link
library (DLL) written in C++. JNI is portable in a sense
that it does not assume any particular JVM on a given
platform.

JNI plays a major role in creating a device control
layer. Although it is possible to access C++ classes at
higher level using JNI, it is preferable to limit the use of
JNI at lower level where it becomes inevitable from a
standpoint of code management.

V. Java for Accelerator Controls

It is true that there are problems with Java as we have
discussed, the merit of adopting Java for accelerator
control systems is rather obvious.

5-1. Portability on a Heterogeneous System

If a control system contains multiple platforms, Java gives
enough portability to cover them. It is especially useful to
gradually upgrade an existing system. The run-time
performance of Java does not become an obstacle unless
it is used at the real-time layer.

5-2. Standard Libraries

The Java distribution kit comes with standard set of
libraries that cover wide variety of fields including
graphics, database and networking. This is quite contrary
to the case of C++ where we must select libraries very
carefully. A potential problem is a lack of a library for
scientific computing when a control system is model-
based.

5-3. Device Access

It is possible to write a real-time layer entirely in Java by
using Embedded Java when it is delivered. There are also
some commercial products already available such as
Jbed[6]. However, it is more realistic to assume that a
real-time layer remains in C/C++ and publishes a JAVA
API by using JNI. Although the users can do this, the
manufacturers are expected to provide the JAVA binding.

5-4. Database

While a database is important for a control system, it is
not seamlessly integrated into the system for most case.
The situation with Java is similar but there is less diversity
in available options to access the database. Java provides
Java Database Connectivity (JDBC) that is equivalent to
Open Database Connectivity (ODBC) for other languages.
When the run-time performance of JDBC is not sufficient,
there is a faster link available for major database systems,
just as in the case of ODBC.

As the industries use databases much more than we
do, there are already various commercial products
available off the shelf. Many of them are component-
based that use Java Beans.

5-5. Distributed Computing

In addition to the support for traditional networking, Java
supports two of the modern distributed computing scheme,
Common Object Request Broker (CORBA) and Remote
Method Invocation (RMI), as a part of the distribution kit.

They are also used in the industries mostly in conjunction
with databases.

Enterprise Java Bean (EJB) is one of these examples
that provide a framework for enterprise software systems.
As EJB is too much for a database, it is not immediately
useful for a control system but it can be a template for it.

Java development environments are to support such
enterprise computing, which means an advanced support
for CORBA and RMI. This immediately helps the
development of control systems.

While CORBA is most accepted in the industries
today, it is important to evaluate both CORBA and RMI.
When a control system is highly Java-based, RMI will
provide better over-all efficiency as it adheres to Java
directly. It should be also noted that a RMI server
allocates a thread for each client that gives a better
response than CORBA when the total number of clients is
less than 200 or so. A CORBA server recycles threads to
handle thousands of clients that may make the response
time unpredictable. We should be careful when we use the
technologies developed for the business software.

One very interesting possibility is the use of JINI
that is in a final stage of beta testing. As its very simple
and flexible architecture, it can be very suitable for a
control system.

5-6. Multi-tasking and Multi-threading

Multi-tasking is at the operating system level and involves
OS-specific system calls that may not be well supported
by Java. We must be extremely careful to confirm this
issue. In case of Windows, only Microsoft Visual J++
compiler directly supports Win32 system calls.

Multi-threading is inside the Java programs.
Although Java may use its own threading mechanism that
is not native to the platform, it will not be a performance
problem as far as we do not use it at a real-time layer.

5-7. Personal Resource

For any accelerator control system development, the
bottleneck is always the availability of the controls
software developers. The burden of staff training of Java
may not be acceptable. On the other hand, if a control
system is coherent with the industry trend, it becomes
easier to introduce industry-based technologies, purchase
commercial products and even to obtain human resources.

VI. EXAMPLES AT ALS

6-1. Local Device Access in Java

DMMobj is our C++ class library for the use on control
consoles running Windows NT to access accelerator
devices at the Advanced Light Source (ALS) [7]. It has
been successfully ported to Java [8]. The C++ class is

rewritten in Java and JNI is used at the lowest level. The
port was quite straightforward.

6-2. Remote Device Access using RMI

DMMobj in Java was extended to be a distributed object
by using Remote Method Invocation (RMI) and called
RDMMobj[9]. It is strictly made read-only for safety
reasons.

The ALS control system has a bandwidth of over
1000 read access per second to the online devices.
Therefore, there is no need to perform a ganged access to
a group of devices. An atomic access is always fine on the
consoles. However, this scheme is not acceptable over the
network because of the overhead of data transfer.

Therefore, we modified the RDMMobj so that it can
perform block data transfer. It takes only 232 msec to
read all the BPMs of the ALS storage ring over the
network. In this case, it involves read and transfer of 192
R4 data. It takes only 1.21 msec to read a R4 data from an
on-line device in case when 192 readings are grouped.

6-3. Modeling and Simulation in Java

We have also ported a subset of Goemon [10], a C++
class library for accelerator modeling and simulation, to
get TracyJ in Java. This implements the standard 4x5-
matrix formalism for linear optics calculations. The run-
time performance of TracyJ is much better than we
expected. Here is a comparison of run-time speed for two
cases:

A. A step-by-step particle tracking of the ALS
storage ring for 10,000 turns.
B. A dynamic aperture calculation of the ALS
storage ring.

 Both are basically a repetition of matrix and vector
multiplication an were done on a PC with dual Pentium 2,
450 MHz, 128 MB of RAM running Windows NT 4.0
SP4.

 Case A Case B
Java Interpreter sec sec
 Sun Classic JVM 1.2 4.6 43.1
Win32 Native Java Compiler
 Visual Cafe 3.0 12.8 113.5
 Tower J 2.22 8.2 67.7
 Visual J++ 6.0 5.5 48.0
Win32 Native C++ Compiler
 Visual C++ 6.0 7.5 51.8
 C++ Builder 3.0 8.8 46.0

Remember that this comparison was done as a part of our
porting process of Goemon to Java. It is not intended to
be a benchmark test to compare the run-time performance
of Java and C++. Both versions of source codes are
differently optimized by hand and there is no line by line
correspondence. Each version must have room for better
optimization. Nevertheless, we can safely claim that Java

has become suitable for scientific calculations as far as
execution speed concerns in case of accelerator modeling
and simulation.

VII. CONCLUSION

As far as we have experienced by creating small examples
at ALS, the run-time performance of Java on Windows
NT 4.0 is satisfactory not only for accelerator control
purposes but also for scientific computing. We believe
that the use of Java should be always a part of options for
any accelerator control system design when we pursue the
portability to keep the system flexible enough to evolve
over time. Java is especially suitable for continuous
system upgrades if the system has become heterogeneous
in spite of its original design.

ACKNOWLEDGEMENTS

The author thanks R. Hajima at U. of Tokyo for fruitful
technicall discussion, A. Jackson and D. Robin at ALS for
their encouragement.

REFERENCES
[1] R. Tolksdorf, “Programming Languages for the Java
Virtual Machine”, http://grunge.cs.tuberlin.de/~tolk/
vmlanguages.html
[2] Metrowerks Corp., Austin, TX
[3] a) Symantec Corp., Cupertino, CA. b) SuperCede, Inc.,
Bellevue, WA. c) Microsoft Corp., Seattle, WA.
d) IBM Corp., New York, NY. e) Tower Technology,
Austin, TX
[4] W. Kahan and Joseph D. Darcy, “How Java's
Floating-Point Hurts Everyone Everywhere”, ACM 1998
Workshop on Java for High-Performance Network
Computing, March 1998. http://www.cs.berkeley.edu/
~wkahan/JAVAhurt.pdf
[5] D. Hoffner, “The JUMP Compiler”, http://ourworld.
compuserve.com/homepages/DeHoeffner/jump.htm
[6] Oberon microsystems, Inc., Zürich,Switzerland
[7] A. Jackson, IEEE 93PAC, 93CH3279-7,1432, 1993.

S. Magyary, IEEE PAC93, 93CH3279-7,1811,1993.
[8] H. Nishimura, IEEE 95PAC, 95CB35843,2162, 1996.

H. Nishimura, LSAP-153, LBNL, 1993.
[9] H. Nishimura, LSAP-256, LBNL, 1998.
[10] H. Nishimura, LSAP-261, LBNL, 1999.

	TopPage
	Paper Index
	Author Index
	Movie

