PC based control system using ActiveX in the KEK e/e" Linac

Isamu Abe, Hitoshi Kobayashi, and * Masahiko Tanaka
KEK, Tsukuba, Japan
*Muitsubishi Electric Co., Ltd. Tsukuba, Japan

Abstract

The KEK 2.5GeV e-/p+ Linac (electron positron linear
accelerator) was boosted to 8.0 GeV from 1995 to 1998.
During this upgrade in energy, the functionality of the
GUI isbeing increased, asis the capacity of the Database.
An outline of the system and its results are presented
along with its GUI and reinforced database.

1 INTRODUCTION

In accelerator control systems, smaller accelerators
have begun to use the most advanced PC systems
available. At the same time, in the domain of accderator
control, a software paradigm-shift has occurred. This
change is not attributed just to the availability of faster,
more powerful hardware, or a more robust OS, but also
to the deveopment of new software and network
technologies. These advancements in both hardware and
software were anticipated, so along with the increase in
energy from 25 GeV to 8 GeV of the KEK
electron/positron LINAC, we have upgraded to a new PC
based accelerator control system. This paper proposes
"COACK" (Component-ware Oriented Accelerator
Control Kernd), and discusses COACK phase 2.

2 CONVENIONAL SYSTEM

Historically, accelerator control systems have been
built using object oriented programming or structured
programming, implementing a procedural language. This
is the case of the old Linac control system. The new
system is being created not through the use of a
procedural language, but by using component-ware and
tools. Before this idea appeared, the development of
accelerator control software encountered problems,
which are discussed below.

Construction was on a large scale, resulting in high
production costs. Accelerator control software tools are
readily available on the market, or if not available can be
created through ajoint project between institutes.

Commercially available tools can carry out most of the
functions required by an accelerator control system, from
controlling measuring tools (LabView, VEE etc) on a
small to medium sized accelerator through to operating a
large scale accelerator (EPICS, Vista etc). Although the
tools that are currently available offer useful and

powerful functions within their limits, combining tools to
obtain the benefits of both is difficult. A solution to this
problem is discussed in this report.

3 NEW GENERATION OF
ACCELERATOR CONTROL

In the old system, each tool had its own structure and
functions. In other words, there were few commonalties
between them. (shown in Fig.1) The new control system
was created using flexible tools or component-ware,
which use common essential objects. All required
functions were performed in the old system, but only
through the utilisation of multiple tools. The new system
was not created with fixed tools.

When accelerator control systems were analysed, it
was found that there are many common requirements
between accderators. Recently, many kinds of
component-ware have become available on the market to
perform these requirements. For those that are not
available, a joint project to develop them is practical. In
these situations, the system described in this paper is
particularly suitable. The basic kernel used to ddiver
component-ware to this system has been named "
COACK "

Components Tool
DB A Tool
DTP tools B
Simulation code Tool
Drawings 00
Chart C
Trend graph
GUI component
Contral obj O
Communication

Tools

Fig.1 Components and tools

4 COMPONENT WARE

VBX and OCX are tools that were available on the
marked which enabled component-ware development

through the use of Visual Basic and C. In Europe, the
idea of congtructing and sharing of custom-made
components appeared. Thisresulted in the ACOP project.
These days, ACOP objects and OCX can be downloaded
from the Internet fredly, and ActiveX component-ware
can be used to incorporate them into a Windows system.
The accelerator control system underwent some major
changes, through the introduction of these structures.
Thefollowing are available in ActiveX forms:

1) Control ActiveX,
2) Code-component (exe, DLL)
3) ActiveX's document by using VB ver.5 or more.

Also, some additional benefits over Java were found.
There are some drawbacks in this system: components
that were available on the market were adopted, and
those that were not available were created using ActiveX.
These components can then become standard
components. By using ActiveX, the components can be
diversified, and can be stored on a sever and
downloaded to the users system via a network. This
results in the ability to customise the accelerator control
software. Recently, tools such as LabVIEW and VEE
have begun to use component-ware through the
introduction of ActiveX.

5COMMON TASKS

Since task analysis makes it possible to define the
ccelerator domain control system, we undertook a task
analysis of the accelerator control domain. In short, it is
clear that the current tools are more flexible than the
former tools, if the requisite components are given fregly
and the essential requirements are met. The old type of
accelerator control tool was not very productive,
especially for the control of a large accelerator. An
analysis of the tasks in the accelerator control domain
was performed by classifying each layer. A three-layer
structure applies as follows:

1) Human interface layer,

2) Middle process |ayer,

3) Device layer.

further analysis of these three layers shows the following:
a) operation system, trends, web, DTP, images:
b) database, static’s process, logging, static tables,
c) device local control.

Components are available on the market for layers a) a
b). The Layer c) is composed of accelerator-speciff?:
oriented components. The majority of component wark

from an old system can be utilised on the new system

6 COACK

The COAK system does not necessarily require the
tasks identified in the task analysis as a ‘middle layer’ to
be located in the middle of the system. These tasks can
be distributed to any other stations. Granted that the
components are separated, the following two layers exist:

1) Top layer (human interface),
2) Lower layer (device layer),

Because there are distinct differences regarding to task
purpose and function, the layers are clearly divided.
Because the accelerator is an experimental device,
constant modifications are made to meet the
requirements of the user. This results in software upgrade
or maintenance problems on the top layer (human
interface). To counter this problem, we propose that the
application server automatically upgrades each PC. The
application server will also perform software
maintenance on the PCs.

On the other hand, once built, changes in the lower
device layer do not occur often.

Internet
Applicaion |-
server & push
Access Development
Operator’s console Sations
NT4.0 WS |NT4.0 || NT4.0| | NT4.0|
1
G/W (COACK)
NT4.0 MU Pentium 200MHz
Operator's 4CPU multi
console 128MB, 19GB
Windows
NT4.0server
L Il JL J[] veicelae

Fig.2 COACK and application server

a) Task distribution

Because tasks always ran on a specific CPU in the
middle layer of the former system, it was difficult to
relocate them. The COACK proposal, however,
distributes the component ware from the application
sever, meaning that the tasks can be carried out at any
hedel of the system. The application server can also send
nd receive components from accelerators in other
mote laboratories. Component-ware containers are used
to accept distributed objects, and locate the tasks
separately. Through division of the middle layer, CPU
load is decreased, (see Fig 3) and ease of maintenance is
increased..

b) Accelerator control system kernel software

The most important software-kernd isin the upper and
lower layers. Thisis essential, regardless of any device
changes or upgrades made to the system. The
communication is hold N to N, which causes traffic
explosion. Stations, which are managed by the gateway,
are essential. Some changed information are sent to a
specific station. The gateway system is located between
both layers, and one of its functions includes separating
traffic. Accelerator control kernd software, which can be
used on any accelerator control system and does not
belong to both layers, must be used. In addition, it is
able to form the same component-ware as these layers.
The essential components of the accelerator control
kernd software are;

1) database engine,
2) application server, web server,
3) communication system.

"COACK" is necessary to manage accelerator control
and is required in al accelerators. Being composed of

8 APPLICATION PUSH (AP)

Although there are some AP technologies available on

the market, we have developed a new system. The
essential software works on the users station, and is
delivered by an application server.

It is possible to boot alocal machine from the application
server using this AP system.

Through the use of this AP system, clients can perform
upgrades on their local PC’s, or even perform a full
installation. This saves much time and ensures that the
current version of the software is installed, or at least
available to every user.

SUMMARY

We have built part of the PC basextelerator control
system on Windows NT. The situation has changed a
lot since 1998. It has become possible to move into
COM, which is able to be distributed using VB. In this
situation, we demonstrated the possibilities of distributed

component-ware, “COACK” has many advantages, arsbftware by reforming the three layered structure of the
is very adaptable. "COACK" is currently based oraccelerator and by combining COACK with an ACOP

machines running Windows NT; Phase 2 of the projetike module.

will incorporate ActiveX.

In a PC based control system, there was
almost no accelerator control kernel or tool. It was thus

During the first project, the component ware at thexpected that new control software would be created. We

time was not useful, resulting in anceassful project.

T3 L) WD FT0) F723 0 NLIH)

BooE +=x el &G
100

i | LRI N
10 ‘w,‘n N i T R LT
{AVARAPS VYA ey IR) Y Asi
B2 0.000 Tt 1440 B 0.000 ®A[72770 7SR 100.000

E MR A%
=] 0.0000001 Committed Bytes
=

AT
Memory

= Processor

= Processor

SplEs =2
¥¥FMIS00SVR
¥¥FMS500SVR
¥¥FMS500SVR
i
¥

AVRARUA #

1.000 % Processor Time 0
1.000 % Processor Time

:PdMem.pme

Fig.3 CPU load on COACK

7 APPLICATION SERVER

The application server in the current system plays a more
important role than did the former server. The server
manages parted flexible objects, and offers them to the
user. The security implications of this server will require
an in-depth analysis. Under these conditions, the object
can be shared with many accelerators at the same time.
Objects will be managed on the server, and will become a
common object. Clients can download an object using a
web browser or VB application. Clients can also upload
these objects to the server.

mentioned that it is possible to manage and distribute
ActiveX objects through the use of an AP server. The
new system will have applications beyond the realm of
accelerator control.

REFERENCES

[1] M.Tanaka, I.Abe and Others
“Database system for Linac operation support”
Linac conference '97, Sendai, Japan

[2] I.Abe and M.Tanaka
"Feedback of operators’ experiences to console
programs in the KEK&" Linac"
ICALEPCS97, 1997 Beijing China

[3] M.Tanaka and I.Abe
" Database system in the Linac PC based control "
PCaPAC'99, this workshop

	TopPage
	Paper Index
	Author Index
	Movie

