
JAVA-BASED OPERATOR INTERFACE.

G. Obukhov, Institute for High Energy Physics (IHEP) Protvino, Russia
M. Clausen, Deutsches Electronen Synchrotron (DESY) Hamburg, Germany
N. Kamikubota, High Energy Accelerator Research Organization (KEK) Tsukuba, Japan

Abstract

The proposal for Java-based Operator Interface
(JOI) is discussed in this paper. Several examples were
implemented for demonstration purpose. These examples
can communicate with real equipment at DESY. JOI
was implemented as 3-tier architecture: JavaBeans as
reusable components on the client side, they
communicate through CORBA/IIOP protocol with
servers which provide connection to different control
systems of DESY. Such approach enables to have multi-
platform operator interface for diverse control systems.
The development of JOI's JavaBeans and building of JOI
displays was done under Windows NT. JOI can run
without any modifications on any Java-enabled platform.

1. INTRODUCTION

Several different types of control systems are in use
at DESY. This is because of distributed and large-scale
nature of heterogeneous equipment involved into the
projects. Each control system uses its own approach to
building of Operator Interface (OI). Also they have
different protocols for data interchange between OI and
real-time layer of the control system. This leads to
incompatibility of OIs. The developer has to create
different OI for each system even if target equipment,
processes have the same functionality. Duplicating of
functionally of the same OIs for different control
systems is inevitable in this case.

Different look and feel is another problem. The
same actions in one OI can cause different behavior in
another OI. It takes some time to learn not only OI itself
but also differences between OIs.

Very often there is a need to add some custom
elements to OI which are not currently in operator’s
disposal. This is a problem in non-modular architectures
of OIs. Usually this leads to rebuilding of the whole
implementation in case of the home-made OIs.

OIs which were built for usage on one platform
mainly don't work on another one. This is a portability
problem.

There are several possible implementations of Java-
based operator interface which could avoid some
disadvantages of current implementations of OIs
described above. Java technology has many features
well-suited for building of OIs. It has many useful
embedded facilities. Many new advanced features
appeared in the latest JDK 1.1 and Java 2 platform -

JavaBeans, Java Foundation Classes (Swing), JavaIDL,
Java2D, etc.

One of the possible implementations of JOI can be
represented as the following 3-tier scheme (Fig. 1).

In order to provide one solution for any underlying
control system one independent standard protocol should
be selected. It can be either RMI or CORBA/IIOP. The
last one was selected because it provides communication
between objects implemented in any language (Java,
C/C++ etc.).

Fig. 1

Data Gateways (CORBA Servers) could be
implemented as CORBA object in native (regarding
language of the control system) language (C/C++ etc.).
Such CORBA objects would be able to read/write data
from/to the control system in proprietary protocol. Also
it would be able to communicate with JOI JavaBeans
(JavaBeans Controls) in standard way using
CORBA/IIOP protocol. Implementing such CORBA
objects doesn't take much time if you have ready-to-use
CORBA development system in your disposal.
VisiBroker (Inprise) was used for JOI development.

2. IMPLEMENTATION

JOI development process can be divided into three
almost independent processes. First, implementation of
CORBA Server. Second, development of all necessary
JOI JavaBeans. Third, development of JOI Displays
using those JOI JavaBeans.

All JOI JavaBeans mentioned in this paper were
developed in VisualCafe (Symantec) under Windows
NT. The examples of JOI displays were also prepared in

VisualCafe. The process of JOI display development
looks very similar to the creation of GUI in any other
visual builders (VisualBasic, VisualC++ etc.). A
developer has just to clicks the appropriate icon (bean) in
toolbar and drop this bean to working area. Then all
properties of the bean can be changed in the
"Properties list".

2.1 CORBA Servers

Two different control systems EPICS and DOOCS
which are in use at DESY were selected for
implementation of real JOI examples. It was done
intentionally to test the interoperability of the same JOI
Beans with different control systems. The simplified
CORBA IDL program describing the interface for both
example servers follows:

module DESY {
 interface EPICS {
 any get(in String name);
 };
 interface DOOCS {
 any get(in String name);
 };
};

Only one method (get) was selected to be supported
by both servers. This IDL file was compiled by
VisiBroker's "idl2cpp" compiler. All necessary C++
client's stubs and server's skeletons were produced as a
result of this compilation. This IDL program was not
compiled by "idl2java" compiler because CORBA
clients (JOI JavaBeans) will be implemented as a clients
with Dynamic Invocation Interface (DII). This means
that they don't need precompiled stubs, because they will
find CORBA server dynamically during run-time period.
All required source files for implementation of "get"
methods were taken from appropriate EPICS and
DOOCS libraries. Only getting of float values was
implemented in those examples of EPICS and DOOCS
CORBA servers. Server implementation should be
linked with appropriate EPICS or DOOCS library and
also with VisiBroker's CORBA library. This process is
depicted in the following image (Fig. 2).

When both servers were successfully compiled and
linked they were started under Solaris. After registration
servers are waiting for requests from clients.

In order to increase reliability of the system two
instances of the same server can be started on different
computers over the subnet. They should have the same
module, interface and object names. When one server
will be stopped because of some reasons (crashing,
switching off) clients (JOI Beans) will be seamlessly
reconnected to the other server.

Fig. 2

This switching to another server will be done by
VisiBroker’s ORB transparently for clients. This
approach can also be used for building of flexible
loading mechanism when server "migrates" from one
overloaded computer to another one with spare
resources.

2.2 JOI JavaBeans

All JOI Beans could be divided into two general
parts, such as "Indicators" and "Controls". "Indicators"
means Beans which can visually represent value or state
of the object under control. Voltmeter, oscilloscope,
speedometer are the examples of indicators in real
measurement technique. "Controls" means Beans which
can be used for changing the value or state of the
controlled object. Buttons, switches, knobs etc. are just
several examples of real controls (Fig. 3).

There are several possible types of JOI Beans from
the graphical representation point of view:

• Vector/Bitmap/Combined (vector and bitmap)
• With Double Buffering/Without Double

Buffering
• With Anti-aliasing/Without Anti-aliasing
• Static/Dynamic (animated)

There are two possible algorithms of
communication between JOI JavaBeans and CORBA
Servers. First, polling is just periodical calling of
communication task for reading remote data. Second,
callback bares a strong resemblance to hardware
interrupts. During callback client and server change their
roles. A server notifies a client that some event
interesting for client occurred on server side. For
example, the status of equipment was changed. As a
rule, client invokes relevant method upon this
notification (e.g. fetching modified data).

Several additional JOI JavaBeans could be also
developed in JOI framework. It could be JavaBeans
providing the following functionality:

• logging and archiving
• reading CAD files (e.g. DWG, DXF)

• decoration elements in vector format (e.g. pipes,
valves etc. for OIs of vacuum systems)

• implementing some kind of calculations (e.g.
arithmetic, FFT etc.)

Fig. 3

Not all these Beans need GUI. But it's possible to
change their properties in JavaBeans development tools
as well. Some of these Beans could also have ability to
communicate with CORBA Server. For example,
calculation Bean could get data from equipment, make
some calculations and forward the result to "indicator"
Bean for graphical representation.

All JOI JavaBeans should support three main
functions:

• read data from control system
• make graphical representation of this value
• fire event in case of alarm value

The properties and different appearance of "Digital
Indicator" JOI JavaBeans follow (Fig. 4).

It's properties related to CORBA communication
(with “Comm” prefix) should be properly configured
during design time before real communication. For this
purpose should be specified such properties as the name
of control system (e.g. EPICS, CDEV, ...), the name of
process variable and scanning period in seconds (if
polling mechanism is in use). All these properties have
to be just typed into properties window of corresponding
Beans' development tool. During run-time period this
information will be used by communication thread for

ORB initialization and for reading real data. The name
of

Fig. 4

control system is used only during ORB initialization
phase for binding to CORBA server. This server should
have corresponding name (e.g. EPICS, CDEV, ...). The
scanning period is used as a period of communication
thread activation. That thread invokes method (“get”) for
reading value from control system. Standard CORBA
Exception messages will be printed to Java console in
case of wrong process variable name or bad network
connection to CORBA server.

JOI JavaBeans have a Communication Customizer
which allows to change the server’s name, process
variable name and scanning period during run-time
period (Fig. 5). If another server name was specified the
JOI JavaBean will be reconnected to the server with new
name.

Fig. 5

The user can invoke this customizer clicking right-
mouse-button when mouse pointer is inside of Bean's
window (Fig. 5).

Two additional utility JOI Beans were developed.
First, "Imager" Bean loads GIF and JPG images
according to URL specified during design-time. It can be
used for loading bitmap backgrounds for JOI displays.
"CGM Viewer" is another utility Bean which can be
used for loading files in vector CGM (Computer
Graphics Metafile) format. Almost all widely used

vector graphics packages have possibility to export files
in CGM format.

2.3 JOI Displays

Any JavaBeans development tool can be used for
building of JOI Displays (Fig.6). All JavaBeans
developed for JOI can be placed in Beans' palette of
corresponding development tool (VisualCafe in this
example).

Fig. 6

In order to add new element to JOI Display the
developer merely has to click its icon in toolbar and drop
it to the working area ("Applet1" in our example). Then
it can be resized. Also any property of selected "Meter"
can be changed in "Property" window. When the whole
operator interface is completed it can be started either
under development environment (for debugging) or
under appletviewer (in case of Applet) or under Web
browser. If JOI will be used in Web browser the best
way is to use Java plug-in and HTML converter for this
plug-in.

3. EXAMPLES

Two different JOI displays were created for
demonstration of JOI facilities. The first one is a remake
of the real MEDM display which is in use at DESY in
MKK group (Fig. 7). This JOI display consists of almost
all process variables (22) of its predecessor. These
variables are supported by EPICS control system. The
second display consists of 8 process variables (Fig. 8). It
was created to demonstrate the ability of the same JOI
Beans (Digital Indicator) to read data from any control
system (e.g. EPICS and DOOCS) using standard
CORBA/IIOP protocol. In contrast with previous display
(Fig. 7) this one reads data from DOOCS control system.
 These two examples demonstrate also utilizing of
different types of backgrounds for JOI displays. First
example uses vector image for background and the
second one uses bitmap background.

The background for the first example was prepared
in CorelDraw and exported into CGM file. Some

standard vector clipart elements were used during
drawing of this background. Afterwards, it was
downloaded into VisualCafe by "CGM Viewer" JOI
JavaBean. Then Digital Indicators were placed in proper
positions over the screen. At last, all necessary labels
(from AWT package) were set and at this point the
visual part of JOI display was completed.

Fig. 7

Bitmap background for the second example (Fig. 8)
was prepared in painting program (Adobe Photoshop)
and saved in JPEG format.

Fig. 8

It was downloaded to VisualCafe by "Imager" JOI
JavaBean. "Local Timer" JOI JavaBean was added to
this Applet for displaying of the current time. All
communication parameters for this Applet were
specified for reading data from DOOCS. After

compilation the Applet was started in appletviewer under
Windows NT (Fig. 8 top).

In order to check global CORBA network the same
JOI Applet was started in KEK, Japan under Digital
Unix. After establishing connection between Applet
(KEK, Japan) and CORBA-DOOCS server (DESY,
Germany) it was possible to read data from DOOCS
control system (Fig. 8 bottom).

4. CONCLUSION

Some benchmarks were done to estimate different
communication schemes from efficiency point of view.
For the first test EPICS' Channel Access library for
Windows 95/NT was in use. Simple GUI for this test was
created in Microsoft's VisualC++. This program just
periodically reads one process variable.

Another testing program was written in Java. It was
started on the same computer and communicated with
the same IOC (Input/Output Controller) as previous
testing program. This Java Applet implemented two
different tests. First of them periodically reads data from
IOC via CGI (Common Gateway Interface). The second
one reads the same data but from CORBA-EPICS server.
CGI gateway was implemented as a Perl script which
invokes EPICS' "caget" utility program.

All results of these tests are collected in the table
(Table 1):

Table 1
Channel
Access

CORBA
Server

CGI

 One cycle (ms) 8.45 10.85 290.8

Any Java program cannot work faster than program
written in C/C++ because of its interpreter nature. But
from the table follows that Java and CORBA overhead
adds only about 2.4 ms to Channel Access time. The
advantage of CORBA approach against CGI one is
obvious.

There are only few ready-to-use widgets in standard
JDK package which you can use for JOI JavaBeans (e.g.
Button, TextField etc.). The rest of elements you ought
to implement yourself or buy from third-parties. For
creation of such widgets you can use the same Java
development environment as for building JOI displays,
for example VisualCafe.

ACKNOWLEDGMENTS

The authors wish to thank Kazuro Furukawa and
Shiro Kusano from High Energy Accelerator Research
Organization (KEK) Tsukuba, Japan, who provided the
testing of JOI applications.

REFERENCES
 [1] Client/Server programming with Java and CORBA.

R.Orfali et al. 1997 ISBN 0-471-16351-1

[2] The essential distributed objects survival guide. R.Orfali
et al. 1996 ISBN 0-471-12993-3

[3] Instant CORBA. R.Orfali et al. 1997 ISBN 0-471-18333-4

[4] The Java class libraries: an annotated reference. Patrick
Chan et al. 1996 ISBN 0-201-63458-9

[5] VisiBroker for C++. Programmer's Guide. Version 3.0

[6] VisiBroker for Java. Programmer's Guide. Version 3.0

[7] JavaBeans Homepage.
http://java.sun.com/beans/

[8] The Free CORBA homepage.
http://patriot.net/~tvalesky/freecorba.html

[9] The Experimental Physics and Industrial Control System
(EPICS) homepage.
http://epics.aps.anl.gov/asd/controls/epics/EpicsDocument
ation/WWWPages/EpicsFrames.html

[10] The Distributed Object Oriented Control System
(DOOCS) homepage.
http://tesla.desy.de/doocs/doocs.html

http://java.sun.com/beans/
http://patriot.net/~tvalesky/freecorba.html
http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumentation/WWWPages/EpicsFrames.html
http://tesla.desy.de/doocs/doocs.html

	TopPage
	Paper Index
	Author Index
	Movie

