JAVA-BASED OPERATOR INTERFACE.

G. Obukhov, Institute for High Energy Physics (IHEP) Protvino, Russia
M. Clausen, Deutsches Electronen Synchrotron (DESY) Hamburg, Germany
N. Kamikubota, High Energy Accelerator Research Organization (KEK) Tsukuba, Japan

Abstract JavaBeans, Java Foundation Classes (Swing), JavalDL,
Java2D, etc.

The proposal for Java-based Operator Interface One of the possible implementations of JOI can be
(JOI) is discussed in this paper. Several examples we#bresented as the following 3-tier scheme (Fig. 1).
implemented for demonstration purpose. These examples |n order to provide one solution for any underlying
can communicate with real equipment at DESY. JQontrol system one independent standard protocol should
was implemented as 3-tier architecture: JavaBeans I8 selected. It can be either RMI or CORBA/IIOP. The
reusable components on the client side, thegst one was selected because it provides communication
communicate through CORBA/IIOP protocol withpetween objects implemented in any language (Java,
servers which provide connection to different controf/C++ etc.).
systems of DESY. Such approach enables to have multi-
platform operator interface for diverse control systems.

The development of JOI's JavaBeans and building of JOI
displays was done under Windows NT. JOI can run
without any modifications on any Java-enabled platform. CORBA/IOP

JavaBeans
Controls

CORBA
Servers

1. INTRODUCTION

Several different types of control systems are in use Proprietary . |
at DESY. This is because of distributed and large-scale o
nature of heterogeneous equipment involved into the
projects. Each control system uses its own approach to
building of Operator Interface (Ol). Also they have
different protocols for data interchange between Ol and

real-time layer of the control system. This leads to 'i‘::g";::;

incompatibility of Ols. The developer has to create

different Ol for each system even if target equipment, Fig. 1

processes have the same functionalidyplicating of

functionally of the same Ols for different control Data Gateways (CORBA Servers) could be
systems is inevitable in this case. implemented as CORBA object in native (regarding

Different look and feel is another problem. Thdanguage of the control system) language (C/C++ etc.).
same actions in one Ol can cauaierent behavior in ~ Such CORBA objects would be able to read/write data
another Ol. It takes some time to learn not only Ol itseffom/to the control system in proprietary protocol. Also
but also differences between Ols. it would be able to communicate with JOI JavaBeans

Very often there is a need to add some custofdavaBeans Controls) in standard way using
elements to Ol which are not currently in operator€ ORBA/IIOP protocol. Implementing such CORBA
disposal. This is a problem mon-modular architectures objects doesn't take much time if you have ready-to-use
of Ols. Usually this leads to rebuilding of the wholesCORBA development system in your disposal.

implementation in case of the home-made Ols. VisiBroker (Inprise) was used for JOI development.
Ols which were built for usage on one platform

mainly don't work on another one. This ipartability 2. IMPLEMENTATION

problem.

L) JOI development process can be divided into three
There are seyeral p035|ble_|mplementat|on_s of JavVaimost independent processes. First, implementation of

b_ased operator interface W.h'Ch COUId. avoid SOMEHRBA Server. Second, development of all necessary

disadvantages of current implementations of OI§q j5yaBeans Third, development o8OI Displays

described above. Java technology has many featur&c‘,ng those JOI JavaBeans.

well-suited for building of Ols. It has many useful All JOI JavaBeans mentioned in this paper were

embedded_ facilities. Many new advanced featureifeveloped in VisualCafe (Symantec) under Windows
appeared in the latedDK 1.1 and Java 2lgtform - N1 The examples of JOI displays were also prepared in

VisualCafe. The process of JOI display developmel

.. . . Esslgg“;"fﬂf CORBAEPICS
looks very similar to the creation of GUI in any othel i T : i
. implementation,
visual builders (VisualBasic, VisualC++ etc.). A '% + e Q
developer has just to clicks the appropriate icon (bean) mE—cr
. . C|
toolbar and drop this bean to working area. Then & | 'PL [compﬁ:t sl
properties of the bean can be changed in tf Server implementation,
. . - DOOCS library,
"Properties list". VisiBroker library | —~
Sceleton for
DOOCS Server CORBA DOOCS
Server
2.1CORBA Servers Fig. 2

Two different control systems EPICS ab®DOCS
which are in use at DESY were selected fomlhis switching to another server will be done by
implementation of real JOI examples. It was don¥isiBroker's ORB transparently for clients. This
intentionally to test the interoperability of the same JOapproach can also be used for building of flexible
Beans with different control systems. The simplifiedoading mechanism when server "migrates” from one
CORBA IDL program describing the interface for bothoverloaded computer to another one with spare

example servers follows: resources.
module DESY {
interface EPICS { 2.2J0Il JavaBeans
any get(in String name); . .
Y Y gel g) All JOI Beans could be divided into two general
interface DOOCS { parts, such as "Indicators" and "Controls". "Indicators"
any get(in String name); means Beans which can visually represent value or state
b of the object under control. Voltmeter, oscilloscope,

speedometer are the examples of indicators in real

Only one method (get) was selected to be Suploort@g)easurement technique. "Controls" means Beans which
by both servers. This IDL file was compiled byc@n be used for changing the value or state of the
VisiBroker's “idl2cpp” compiler. All necessary C++ controlled object. Buttons, switches, knobs etc. are just

client's stubs and server's skeletons were produced aSeyeral examples of real controls (Fig. 3).
result of this compilation. This IDL program was not ~ 1here are several possible types of JOI Beans from
compiled by “idi2java” compiler because coRrpathe graphical representation point of view:
clients (JOI JavaBeans) will be implemented as a clients])]
with Dynamic Invocation Interface (DIl). This means * Vector/Bitmap/Combined (vector and bitmap)
that they don't need precompiled stubs, because they will * With Double Buffering/Without Double
find CORBA server dynamically during run-time period Buffering S _ S
All required source files for implementation of "get® * With Anti-aliasing/Without Anti-aliasing
methods were taken from appropriate EPICS and * Static/Dynamic (animated)
DOOCS libraries. Only efting of float values was
implemented in those examples of EPICS &@OCS There are two possible algorithms of
CORBA servers. Server implementation should bgommunication between JOI JavaBeans and CORBA
linked with appropriate EPICS ®0OOCS library and Servers. First, polling is just periodical calling of
also with VisiBroker's CORBA library. This process iscommunication task for reading remote data. Second,
depicted in the following image (Fig. 2). callback bares a strong resemblance to hardware

When both servers were successfully compiled arigterrupts. During callback client and server change their
linked they were started under Solaris. After registratiofPles. A server notifies a client that some event
servers are waiting for requests from clients. interesting for client occurred on server side. For

In order to increase reliability of the system twgexample, the status of equipment was changed. As a
instances of the same server can be started on differéfe, client invokes relevant method upon this
computers over the subnet. They should have the saffification (e.g. fetching modified data).
module, interface and object names. When one server Several additional JOI JavaBeans could be also
W|” be stopped because of some reasons (Crashirﬁveloped in JOI framework. It COU|d be JavaBeans
switching off) clients (JOI Beans) will be seamlesslproviding the following functionality:
reconnected to the other server.

* logging and archiving
* reading CAD files (e.g. DW@XF)

« decoration elements in vector format (e.g. pipe©RB initialization and for reading real data. The name

* implementing some kind of calculations (e.g. il |
th t FFT t Stanci fimedia | Addiional | Panel | Shape] Indicators [JOlutilties |
arithmetic, etc.)
AlarmCalor abelleft
General Classification AlamHigh sbelShow
AlamLow sbelTop
Background ayout
. - & Bounds etters
ol :" Class ame
T — ol N 0 CommConnect umCe e
E 1200 [N [=) | sTop | | [
Indicators 5 ol c e, UriEo
WHHE D = CommPrefix umPRight
CommS canPeriod anelBevel
Meter Digital Fanel | Neon Indicator Chart Termometer Panel 7889 || Curent 7890114 | CommServerName anelCalor
CommVariableNameg anellnset
SITEr Corrnt EEIGENEEN Cuvs‘m o Raise
TN curer REEER igfts nits
O T -1 A S Encbled UnitsColor
[2l e - Ty curer NEETZN FlostType Uniicshow
Reset | o s a5 Fort Value
| oy oy = m Foreground ValusString
Controls oFF Y B "~ currert_| IEEETTN Ourrent | inherit Background ValueTypeSting
Inherit Fant Visible
Button Switch Kinob Slider Wheel Nurneric Spinner nherit Foreground
abel ‘WindowColor
abelAside
abelColor
abelFont
Graphical Appearance. Flg 4
Aliased Anti-Aliased
Vector Bitmap Combined

control system is used only during ORB initialization
A 11 B phase for binding to CORBA server. This server should
have corresponding name (e.g. EPICS, CDEY, The
scanning period is used as a period of communication
e thread activation. That thread invokes method (“get”) for
reading value from control system. Standard CORBA
Exception messages will be printed to Java console in

S — case of wrong process variable name or bad network

s conaunor prpine connection to CORBA server. o .
ERL% ~ JOI JavaBeans have a Communication Customizer
which allows to change the server’'s name, process
variable name and scanning period during run-time
Fig. 3 period (Fig. 5). If another server name was specified the

JOI JavaBean will be reconnected to the server with new
Not all these Beans need GUI. But it's possible tname.

change their properties in JavaBeans development tools
as well. Some of these Beans could also have ability t0 e prmm—
communicate with CORBA Server. For example,
calculation Bean could get data from equipment, make [y Pem [Pesy
some calculations and forward the result to “indicator"
Bean for graphical representation.

All JOI JavaBeans should support three main e |

functions: Watiahle Name | DOKKLP1T_Aussenlu_ai

[} Communication Customizer

Cantrol Sytem |EPICB

Method Name | et
« read data from control system

» make graphical representation of this value s |
« fire event in case of alarm value oK | Gancel
The properties and different appearance of "Digital Fig. 5

Indicator" JOI JavaBeans follow (Fig. 4).

It's properties related to CORBA communication The user can invoke this customizer clicking right-
(with “Comm” prefix) should be properly configured moyse-button when mouse pointer is inside of Bean's
during design time before real communication. For thigindow (Fig. 5).
purpose should be specified such properties as the name Ty additional utility JOI Beans were developed.
of control system (e.q. EPICS_, CDE\(,) the name qf_irst, "Imager" Bean loads GIF and JPinages
process variable and scanning period in seconds gfcording to URL specified during design-time. It can be

polling mechanism is in use). All these properties havgsed for loading bitmap backgrounds for JOI displays.
to be just typed into properties window of correspondingcgm Viewer" is another utility Bean which can be

Beans' development tool. During run-time period thigsed for loading files in vector CGM (Computer
information will be used by communication thread foigraphics Metafile) format. Almost all widely used

vector graphics packages have possibility to export filegandard vector clipart elements were used during
in CGM format. drawing of this background. Afterwards, it was
downloaded into VisualCafe by "CGM Viewer" JOI
_ JavaBean. Then Digital Indicators were placed in proper
2.3J0I Displays positions over the ~ screen. At last, all necessary labels
Any JavaBeans development tool can be used ffffom AWT package) were set and at this point the
building of JOI Displays (Fig.6). All JavaBeansVisual part of JOI display was completed.
developed for JOI can be placed in Beans' palette . _
corresponding development tool (VisualCafe in thi, — ~—="
example). A o

‘

Foriufida; — -
s v x e et - - A
FEile Edt View Search Project Inset Tools Layout Object Window Help

T L= ot e e NI]) o 0 e A B |
NE] L) B e Gl
5| " Standera] Ui | Panel] Shape] Meter

o

Geb 2 FEC-Laboraume.

Gebaeude 2 FEC-Labor 22-002

Umlufiklappe
| 89599985 % aur | Data provided by EPICS control system. MKK group.

E

|

|
O lightGresy
e |

|

|

|

]

1

372
12
Width 204
— Height 204
CenterColor |3 pink
true

Mﬁemummiu

o
1= R Fiter Hemregiter TSN ENacherhizer Fiter | OAmpBBEGEHER

<
|
For Help. press F1

Applet started

Fig. 6 Fig. 7

In order to add new element to JOI Display the

Bitmap background for the second example (Fig. 8)

developer merely has to click its icon in toolbar and drO\R/as prepared in painting program (Adobe Photoshop)
it to the working area ("Appletl" in our example). Ther}ind saved in JPEG format

it can be resized. Also any property of selected "Meter
can be changed in "Property" window. When the whole
operator interface is co_mpleted it can be startt_ad either TTF. First Module
under development environment (for debugging) or
under appletviewer (in case of Applet) or under Web
browser. If JOI will be used in Web browser the best
way is to use Java plug-in and HTML converter for this

plug-in.

[EfAppl et Viewer: JOlappletTTF class
i Appl pp!

Applet

Applet started in DESY, Germany
Deutsches Elektronen-

3. EXAMPLES
Two different JOI displays were created for ~ |
demonstration of JOI facilities. The first one is a remake TTF. First Module

of the real MEDM display which is in use at DESY in
MKK group (Fig. 7). This JOI display consists aifnost e
all process variables (22) of its predecessor. These
variables are supported by EPICS control system. The
second display consists of 8 process variables (Fig. 8). It
was created to demonstrate the ability of the same JOI O i By e TS
Beans (Digital Indicator) to read data from any control
system (e.g. EPICS andOOCS) using standard
CORBAVJIIOP protocol. In contrast with previous display
(Fig. 7) this one reads data frdd®OCS control syiem.

These two examples demonstrate also utilizing %vaBean. "Local Timer" JOI JavaBean was added to
different types of backgrounds for JOI displays. Firstth

| , tor back 4 and is Applet for displaying of the current time. All
exampie USes vegtor Image Tor background an tr2:%mmunication parameters for this Applet were
second one uses bitmap background.

ified f ding data fromDOOCS. Aft
The background for the first example was preparesdpec' ied for reading data from er

in CorelDraw and exported into CGM file. Some

Fig. 8

It was downloaded to VisualCafe by "Imager" JOI

compilation the Applet was started in appletviewer under
Windows NT (Fig. 8 top). [1]
In order to check global CORBA network the same
JOI Applet was started in KEK, Japan under Digit o1
Unix. After establishing connection between Apple
(KEK, Japan) and CORBA-DOOCS server (DESY,
Germany) it was possible to read data fref®@OCS [3]
control system (Fig. 8 bottom). [4]

4. CONCLUSION [5]

Some benchmarks were done to estimate differef{
communication schemes from efficiency point of view7
For the first test EPICS' Channel Access library for
Windows 95/NT was in use. Simple GUI for this test wa
created in Microsoft's VisualC++. This program jus
periodically reads one process variable.

Another testing program was written in Java. It waf!
started on the same computer and communicated with
the same 10C (Input/Output Controller) as previous
testing program. This Java Applet implemented two

]

different tests. First of them periodically reads data frmHo]

IOC via CGI (Common Gateway Interface). The second
one reads the same data but from CORBA-EPICS server.
CGlI gateway was implemented as a Perl script which
invokes EPICS' "caget" utility program.

All results of these tests are collected in the table
(Table 1):

Table 1
Channel CORBA CGl
Access Server
One cycle (ms) 8.45 10.85 290.8

Any Java program cannot work faster than program
written in C/C++ because of its interpreter nature. But
from the table follows that Java and CORBA overhead
adds only about 2.4 ms to Channel Access time. The
advantage of CORBA approach against CGI one is
obvious.

There are only few ready-to-use widgets in standard
JDK package which you can use for JOI JavaBeans (e.qg.
Button, TextField etc.). The rest of elements you ought
to implement yourself or buy from third-parties. For
creation of such widgets you can use the same Java
development environment as for building JOI displays,
for example VisualCafe.

ACKNOWLEDGMENTS

The authors wish to thank Kazuro Furukawa and
Shiro Kusano from High Energy Accelerator Research
Organization (KEK) Tsukuba, Japan, who provided the
testing of JOI applications.

REFERENCES

Client/Server programming with Java and CORBA.
R.Orfali et al. 1997 ISBN 0-471-16351-1

The essential distributed objects survival guide. R.Orfali
et al. 1996 ISBN 0-471-12993-3

Instant CORBA. R.Orfali et al. 1997 ISBN 0-471-18333-4

The Java class libraries: an annotated reference. Patrick
Chan et al. 1996 ISBN 0-201-63458-9

VisiBroker for C++. Programmer's Guide. Version 3.0
VisiBroker for Java. Programmer's Guide. Version 3.0

JavaBeans Homepage.
http://java.sun.com/beans/

The Free CORBA homepage.
http://patriot.net/~tvalesky/freecorba.html

The Experimental Physics and Industrial Control System
(EPICS) homepage.
http://epics.aps.anl.gov/asd/controls/epics/EpicsDocument
ation/WWWPages/EpicsFrames.html

The Distributed Object Oriented Control System
(DOOCS) homepage.
http://tesla.desy.ddbocs/doocs.html

http://java.sun.com/beans/
http://patriot.net/~tvalesky/freecorba.html
http://epics.aps.anl.gov/asd/controls/epics/EpicsDocumentation/WWWPages/EpicsFrames.html
http://tesla.desy.de/doocs/doocs.html

	TopPage
	Paper Index
	Author Index
	Movie

