On-line Modeling in Accelerator Control

S.Kuznetsov

Kurchatov Synchrotron Radiation Source,

Kurchatov Institute, 123182 Moscow, Russia

Abstract

An object-oriented package for on-line modeling and control has been developed at the SIBERIA synchrotron radiation source complex (2.5 GeV). The paper presents examples of implementation this C++ library for most frequently used procedures at the accelerator ring complex. The standard list includes the beam threading through transport lines, injection, and procedures for ring concerning to change and control lattice parameters. The original library does not compete with the standard MAD or TANSPORT codes, but allows to insert simulation in control applications. Problems and experience to porting the C++ library, adaptation to hardware and to high-level graphical interfaces are discussed.

1.Introduction.

	One of the key idea of the on-line modeling or simulation is combination the standard methods of accelerator control and simplified accelerator physics routines. There are few similar projects around the world. The special differential algebra toolkit was created at Fermi Lab.[1]. The toolkit implements two classes DA and LieOperator. The CEBAF uses Accelerator Real Time Modeling Information Server [2][3]. It provides data access and supports computations for model-driven applications. The client-server approach is used to support access to the DIMAD and PARMELA lattice modeling programs. They used CDEV mechanism (based on EPICS) for control system connection. The ALS conception based on C++ library [4]. It is really object-oriented library for simulation and control. The basic class is Element, which covers a drift space, a bending magnet, a beam position monitor and so on. The Ring class is a child of the BeamLine class. The complex approach was realized at the ELETTRA synchrotron radiation facility [5]. It includes machine physics routines, conversion routines, data arrays for machine parameters and for calibration parameters. This software placed between high-level applications and control systems calls.

	The C++ library for the on-line modeling support was developed at Kurchatov Synchrotron Radiation Source (SIBERIA storage ring).

2. Modeling during accelerator complex operations

	The most frequently used procedures for accelerator complex are injection and ring routines as a orbit manipulations and ramping. The routine procedures could be separated from the commissioning period and from the advance studies. The standard list of procedures includes beam threading for transfer lines, matching for injection process and orbit correction for the ring. This list could be expanded in case of detailed studies or for fine tuning beam parameters. It is advanced list of procedures. It includes linac (injector) energy and emittance measurements. For this studies one has to get control of the transfer line and makes some machine calculations. To optimize injection process we have to define some parameters of the injected beam. It based on turn-by-turn beam diagnostic system. Operator can get phase-space measurement, dynamic aperture measurement and fast betatron tunes measurement. It should be supported using on-line modeling package. The routine ring procedures such as orbit correction could be extended by new functions for lattice control and measurement. The insertion device compensation is very important for the synchrotron radiation source. Each new device requires new lattice study and compensation. To realize these advanced procedures one has to know machine parameters on-line. User can run the powerful routines like MAD, PARMELA or TRANSPORT to recalculate, but it is inconveniently. The designed library doesn’t compete to powerful accelerator modeling codes, but allows to insert machine calculations in control applications.

	The basic conception of the library is ‘simple but enough’. Main parameters are:

- First-order formalism;

- Interface to 'standard' MAD or text file machine definitions;

- Simple interfaces to control system and to graphical presentation;

- On-line calculations - transfer matrices, Twiss parameters, beam position coordinates in both planes.

C++ implementation

To illustrated the realization of Library few portions of C++ code presented. First one implements reading data structure from file and filling the internal C++ structures for magnetic system.

//***** Read database structure*************

//

MagSys->CreateMagArray(database->nlines);

for(int i=0;i<database->nlines;i++)

{

MagSys->LoadMFromMag(database->EList[i]);

}

MagSys->SetStructure();

//

	//**************************************

Second portion of code presents calculations to update modeling information. If one of the magnetic element was changed from operator console we have to recalculate whole magnet structure of the transport line or accelerator ring. One can see full code for this procedure.

//**** Update calculations******************

EE->SetEnergy(initial->nE,dpp);

PTwVector Xinit, Zinit;

Xinit = new TwVector(initial->nBx,0.,0.,0.,0.);

Zinit = new TwVector(initial->nBz,0.,0.,0.,0.);

PYVector Xin, Zin;

Xin = new YVector(initial->nX,initial->nXx);

Zin = new YVector(initial->nZ,initial->nZz);

MagSys->MGroup->FillMatrix(EE);

MagSys->MGroup->SetTwissIn(Xinit, Zinit);

MagSys->MGroup->TwissInOut();

MagSys->MGroup->SetXZIn(Xin, Zin);

MagSys->MGroup->XZInOut();

//**************************************

Last portion of code presents internal code for coordinates updating procedure. One can see the ‘List’ implementation for the group of magnetic elements. This is full code.

//***** Coordinates calculations for group of elements****

void XZLine(PTMSControlChannel AMchannel, PTMSControlChannel BMchannel, void* PS)

{

if(PS)

	 BMchannel->SetXZIn(PTMSGroup(PS)->Xin, PTMSGroup(PS)->Zin);

	 else

	 BMchannel->SetXZIn(AMchannel->Xout, AMchannel->Zout);

	 BMchannel->XZInOut();

}

void TMSGroup::XZInOut()

{

		ForEachIter(XZLine,this);

	TMSControlChannel::XZInOut();

}

//***

4. Examples

	The C++ on-line modeling class library was ported to MS-Windows platform and to HPUX platform. Few high level applications were designed for testing this library. The first one describes transfer line from the SIBERIA-1 storage ring to the SIBERIA-2 storage ring. It based on MS-Windows platform. This transfer line control application uses input files in the .dbf and .xls formats.

To test modeling library under UNIX platform the C++ core was ported to HPUX at the NSLS facility. One application was created to simulate XRay storage ring . This application based on GLISH middleware conception. There are 2 tasks for graphical presentation (based on standard MOTIF library), on-line modeling portion, interface to get information from MAD description files and interface to control system. All interprogram communications realized via events mechanism.

	Figure 1 presents operator panel for another example of the on-line modeling. It implements control for the transfer line from linac to booster synchrotron at NSLS facility. It is running under HPUX and uses text definition files for magnet structure and calibration information. The screen combines few windows. There are structure of the transfer line, graphical presentation of Twiss parameters (trajectories optionally) and several slices of beam ellipse in both coordinate planes. At the bottom part of console one can see slider to change initial beam parameters and slider to change selected control parameter (strength of the quadrupole lens or corrector value). User can drug the sliders to change control value. The modeling information and graphics updates immediately. The moveable vertical cursor allows to show additional slice for beam ellipse at the right top corner.

�

Figure 1. Transfer line on-line modeling.

	We plan to use this C++ library for injection diagnostic at SIBERIA-2 storage ring and VUV storage ring (NSLS). This sort of beam diagnostic based on turn-by-turn measurement during first few thousands turns after injection. The on-line modeling library will allow to get machine information using transfer matrices and calculate phase-space pictures from the measurements. This sort of beam diagnostic and modeling will support injection matching feedback system.

5. Conclusion

	

	Possibility of usage the on-line modeling library for different kinds of control system is topic for discussion. The main problem of software sharing is definition of connections. Interface to low-level control could be realized as primitive read/write functions or CDEV connection. The input files can be presented as normal ASCII files or as a PC .dbf and .xls formats. MAD description files is a standard for accelerator description. The library has to supports all data input formats. Most important question is interface to high-level applications. The primitive way to do it is realization the C wrapper for on-line modeling library. More interesting approach is OLE support.

References.

[1] L.Michelotti, “MXYZPTLK: A Practical, User-Friendly C++ Implementation of Differential Algebra: User’s Guide”, FNAL internal report.

[2] B.A.Bowling et al., “The Use of ARTEMIS With High-Level Applications”, Proc. of ICALEPCS’95 Chicago 1995, will be printed.

[3] B.A.Bowling et al., “Integrated On-Line Accelerator Modeling at CEBAF”, Proc. of PAC’95, pp.2181-2183.

[4] H.Nishimura, “Taking An Object-Oriented View of Accelerators”, Proc. of PAC’95, pp.2162-2166.

[5] M.Plesko et al., “An Approach to Portable Machine Physics Applications”, Proc. of ICALEPCS’95 Chicago 1995, will be printed.

[6] S.Kuznetsov, “C++ Library for Accelerator Control and On-Line Modeling”, Proc. of ICALEPCS’95 Chicago 1995, will be printed.

