A Windows NT based control system for ASTRID and CRYRING

Finn Abildskov, Jørgen S. Nielsen, Karsten T. Nielsen, Torben Worm

ISA, Aarhus university, Ny Munkegade, 8000 Århus C, Denmark

Mats Engström, Erik Westlin

MSL, Stockholm University, Frescativägen 24, S-104 05 Stockholm, Sweden

 A PC/Windows NT based control system for ASTRID and CRYRING is presently being developed. It follows the standard model: There will be one Windows NT server for domain control, file storage, SQL database etc. Front-end computers responsible for connection between the different devices and Console PC's, that is computers with user/operator software, will be running on Windows NT workstations. The primary development tool is Microsoft Visual C++. Other languages such as LabVIEW, Pascal, Visual Basic etc. are supported through an API interface. A highly modular and object oriented approach ensures flexibility and stability. As far as feasible the system operates on abstract data types. Data objects are transported between clients and servers independent of their contents. Hardware specific interfaces are loaded dynamically having predefined abstract interfaces. With this approach a high degree of code reuse can be obtained.

The existing computer hardware for the control systems at ASTRID and CRYRING are obsolete, and does not have room for further upgrades. Therefore a new control system had to be designed. The development of the new control system, ConSys, was started at ISA in the beginning of 95. In the summer 95, MSL joined the project. The aim of the project is to develop a general site and machine independent control system. Taken into our considerations is also the possibility of new facilities here in Århus. The system will be able to run as separate segments, while still running on the same network.

Although UNIX workstations is widely used for control systems elsewhere, it was preferred to base the system on the PC platform. At ISA today, everything apart from our central control computer is based on PC's. This imply, that we have a lot of PC cards for the ISA-bus which we want to keep. Furthermore, a new interface to our front-end hardware, the G64 units, had to be constructed. Because of the in-house knowledge about the PC's a PC ISA bus card was preferred. PC's today have the power needed for a control system, and therefore it was decided to stay on the PC platform. The price of PC's compared to UNIX workstations also influenced this choice.

As operating system, Windows NT was chosen. Windows NT fulfils the requirements for an operating system for a new control system. It is a multi user environment with good reliability, good network support (TCP/IP), good network security, and it runs concurrent processes with different priorities. Furthermore, it has a powerful graphic interface and development tools. It is the intention to use commercial software wherever possible. The following commercial tools are used:

Microsoft Visual C++: Used as the main programming language. The ConSys core, and major client programs are written in Visual C++. Visual C++ offers a good development environment, Microsoft Foundation Classes (MFC), and has a tight bound to Windows NT itself.

Microsoft SQL server/Access: The system database with all address and device information is implemented in Microsoft SQL server. All access to the database is done through ODBC, which means that any ODBC database can be used instead. If the system is going to be used as a small standalone system, an Access database would probably be chosen instead.

Microsoft Developer Network level 3: Documentation and tools needed to program the system and its device drivers.

LabView: Many user applications are planned to be written in LabView. LabView offers an easy and flexible way to develop small graphic oriented applications.

Delphi: An alternative object oriented programming language for client applications in Pascal.

To interface the existing hardware with PC computers, it has been necessary to develop a new PC-card. This development has been done by the computer department at the Institute for Physics and Astronomy, Århus, and is at present in its last testing. The card, called PC-DOCT, is a single board computer with a 86186 microprocessor. The PC-DOCT card will mirror all the information in the G64 units (the crates containing the ADC’s and DAC’s etc.). Each card is able to control seven G64 crates, and has an update frequency of 5 Hz for a completely full crate. To ensure a quick response for control parameters when a parameter is written to the PC-DOCT card, the card writes the parameter directly to the G64 crate.

The new control system, ConSys, follows the standard model for present days control systems - an Ethernet based system with distributed front-ends and client/console computers. The system will have a domain/file server, a database server and optional, a backup server. It will from the start be connected to the in-house local network, so users with the correct software and user rights can access the system from everywhere.

The ConSys system consists of two major parts. The static database, located on a central server. The database contains all machine/hardware dependent information. This includes client program configurations (console pages etc.), parameter definitions, descriptions, interpretations, conversions and addressing. The database will also be used to store set-ups, as well as parameter logging. The database is accessed through ODBC calls, the Windows standard database access method.

The second cornerstone in the ConSys system is the kernel. On each computer, running the ConSys system, an instance of the kernel will be running. The kernel provides the client programs with a uniform interface for parameter access, i.e. the dynamic database for the parameters. The kernel is also responsible for handling device drivers, and it has an abstraction layer from the device driver, that provides the rest of the system with a uniform and well defined interface.

Most of the kernel is located in modules loaded into the system when needed. This ensures that only the needed parts of the system is loaded at a specific computer, which reduces swapping to the hard disk. Because the system is written in an object oriented manner, extending the system to handle new types of devices, and parameters, is simple. The central parts of the system simply do not see the difference. Of course the programs using the information on new devices must know how to interpret the data they receive. The modularity also helps when coping with the differences between the hardware at CRYRING and ASTRID.

User security is handled by the kernel. The user security is also used to set the user priority. Usually there will be four groups (Administrators, power users, normal users, and guests). The guest group will not have writing permission to the system. Each group will have a high writing priority, and a lower read priority. This ensures a quick response when a parameter is changed in the system. Also if the workload is high on the system, users with higher priority is ensured faster access to parameters.

A central concept in the system is a parameter. A parameter may be a current on a dipole magnet, a beam current, a power supply status, etc. Because most client programs are interested in a continues update of the parameters, the system is based on a subscription to a parameter. When a client subscribe to a parameter, it specifies the conditions for new values to be transmitted. The typical conditions specified are minimum/maximum update frequencies and/or minimum changes. Likewise is it only possible to write to a subscribed parameter. Function tables for controlling real time ramping of equipment will also be implemented as parameters in the system. Alarms and events in the system will be implemented as parameters in the same way as other parameters in the system. The same holds true for system status, and diagnostics information.

The software is written in an object oriented structure with a high priority on flexibility and hardware independence. Central objects for parameters are data_values, addresses, requests, data_servers and devices. Each parameter has an address specifying the physical location of the parameter. The address root class specifies the front-end computer and the device on that front-end, on which the parameter is located. Descendants of the address class has additional information needed to locate the parameter in the device. For ease of database lookup and management a general address type, internally called a parameterAddress, with a number of general fields are used for most parameters on the system.

When a client wants data, it send a request to the kernel. In the present system two request types exist; the parameter request, which is a request for a single parameter on the system, and the packet request, which has a list of parameter requests. A request includes the address object needed to locate the parameter and specifies the data_server object to be used with the request. Data_servers are objects transmitting data to the clients. When the kernel receives a request, it distributes the request into local and remote requests. For each remote request, a remote connection is established and the request transmitted. The local request creates the specified data_servers, and registers these at the addressed device. Registered data_servers are activated from the device, when the device has new data available. In it’s simplest form, the data_server just transmits the data to the client at specified time intervals. More complex data_servers may do range checks, additional conversions, etc. The device classes is basically a standardised interface to the hardware device drivers. They contain a uniform interface for data_servers and manages the device depended data communication and data conversion.

At present the project prototyping face has ended, and the main system design is defined. The kernel and database components are now being tested. A device driver and a device class for the PCDoct card is written and is now being tested. The basic structure of a console program is defined and running - but the final graphics are still to be implemented. Other important client programs, like alarm programs and data loggers are still missing. Further information’s can be found on World Wide Web at ‘http://isals.dfi.aau.dk’.

