REAL-TIME PROBLEM AND�OBJECT-ORIENTED MULTITASKING





S. A. Kryukov, Institute for Nuclear Research, Moscow, Russia





Abstract


Present paper covers only one partial aspect of the real-time: ability of the multitasking software to process external events, asynchronous relative to computer, and to take them into account for task switching and scheduling. The problem is particularly important for the CPU-based real-time data acquisition or control (especially with PCs) and not so critical for, say, DSP-based solutions.


The concept of the Object-Oriented Multitasking Technology (OOMT) has been first proposed by author and presented as a demonstration software package (TASKS, diploma of the Borland-Contest’93). The key idea was to implement all the models of multi-tasking and multi-threading (cooperative, preemptive and real-time) and different task scheduling strategies on the base of the same object-oriented code with use of late binding.


Some of the OOMT approaches have been implemented for working stand-along real-time PC programs (Lebedev Institute of Physics, Moscow), or measurement applications for Windows (INR); some investigations for UNIX (Linux) are presently in progress.


Several trends of the contemporary development of programming technologies have been anticipated by the OOMT. We hope some concepts to be of interest for future development of the system-level software.


1 INTRODUCTION


Development of the OOMT has been started with the attempt of the author to develop a working model or an experimental prototype for the multitasking real-time system. Why did we  think it was necessary?


Importance of the multitasking and multi-threading approaches to programming of the data acquisition and instrument control systems and applications is not clearly realized so far.


Actually even the simplest structure of the research experiment is evidently decomposed into at least two threads of execution. This is because we always have at least two different sources of “causation”. The first one is related to the scenario of experiment or its plan, programmed during design time; another one is related to the user and his prospective decision to break into the process of the experiment at run-time.


One more aspect is also present when we consider real-time processing. It is related to behavior of the experimental object and measurement instrumental interface.


Three aspects mentioned above are generally related to different organization of the code: event-driven, sequential and interrupt-driven respectively. A subject of the programming technology is to couple these three programming techniques for design of control or data acquisition applications.


We put forward a most natural approach to this problem, based on multitasking and multi-threading. Our architecture of multitasking environment itself differs from traditional and it is more adequate to the problem and more flexible. Finally, in future we would like to hope to overcome the unnatural subdivision of the operational systems into general-purpose and real-time ones.


2 OOMT CODES


Fig. 1 represents basic codes contributing to the Object-Oriented Multitasking Technology.
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2.1 TASKS


The TASKS software follows so called Xinu approach [1], developed by Douglas Comer and associates. (Xinu is a self-referencing acronym that stands for “Xinu is not Unix” ). On PC you develop all the application code under DOS and link it with a Xinu library to create an .EXE file. When you execute it, Xinu takes over the computer and becomes new operating system [2].


TASKS library is a direct analog of the Xinu library, but developed using strong object-oriented approach. The TASKS code has been implemented as a code built under DOS and, later, under the protected-mode DOS extender. The Application Program Interface (API) for development of applications is merely a set of base classes and a few non-OOP functions.


Another analog of the TASKS approach is usage of Ada® programming language [3]. When you declare an Ada task type you create a code of a task body. This code begins to run concurrently when you create an instance of the task type. It behaves like a separate thread of execution, sharing the address space with the main process.


TASKS provides many Ada capabilities, in particular, almost full Ada rendezvous semantics and exception mechanism [3]. The object-oriented features of the software anticipated some basic capabilities of Ada 95 [4].


Additionally, TASKS enables the user to create his own model of multitasking. Both preemptive and cooperative (non-preemptive) multitasking can be easily implemented. Besides, various user-defined task scheduling strategies can be implemented without having to dig into the complex and system-dependent task switching mechanism. Then, the default architecture of the event-oriented user interface involves multitasking in a way, that gives a good performance. Finally, all these features can serve as a base for implementation of a real-time system architecture of good flexibility, reliability and performance.


2.2 MultiLab


The MultiLab system is a direct descendant of the TASKS code. It has been developed using the TASKS library classes to build inherited classes for solving of the problem for research experiments in optoelectronics (Lebedev Institute of Physics, Moscow).


This code introduces two novelties of our programming technology: Asynchronous Process Control (APC, see also [5, 6]) and a universal format and an API for storing of the experimental data.


Being a stand-along software loaded by DOS, a MultiLab application does not enable any DOS programs to run concurrently. Instead, all the instruments necessary for experiments have to be linked in the MultiLab shell. It contains a multi-dimensional graphical viewer for the experimental data, a simple text editor, calculator, etc. As to application tasks, running concurrently, these are coded before and remain the same during the entire MultiLab shell session. This drawback has been compensated by the flexibility of the APC technique (see 3.9). Many aspects of an application task behavior could be modified during run-time, even the necessity of this was not well anticipated by the programmer of an application during design-time.


Our experience with the MultiLab is restricted by experiments with use of the HPIB instrumental interface.


2.3 MOON Lab system 1.0


This software has been first reported in [5], see also [6]. (“MOON” stands for “Multitasking Object-Oriented Network”.) It has been created at the Moscow Meson Factory primarily for solving various problems for beam diagnostics and used for numerical simulations, too.


Present overview of both MOON Lab versions (1.0 and 2.0) covers only a conceptual relation of this system and the OOMT.


The development of this software has been started with understanding, that development of own operation systems is nearly impossible when accompanied by extensive work at accelerator applications; so we decided to focus on implementation of some OOMT concepts for existing software platforms.


The most unpleasant drawback of the Windows 3.* is not a cooperative nature of multitasking, as one could conclude. The most important disadvantage for implementation of the OOMT concept is the way Windows recognizes its tasks. It is based on the default C condition “DS=SS”, that means that both stack and data segment of the task should be placed at the same segment. One could implement independent threads with separate stacks within the normal Windows task along with thread switching, but most Windows API calls become impossible from within the thread’s stack frame due to the condition mentioned above.


By this very reason the implementation of the effective multi-threading under Windows 3.* turns out to be nearly impossible.


With MOON Lab 1.0, the role of the OOMT threads (application tasks) play non-visual user-written Windows codes, running under the MOON Lab Shell, a separate instances of the shell per each application task. The code of  application tasks is, in contrast to normal Windows tasks, not event-driven. Almost all the interchange between the application task code and the MOON Lab Shell is based on the Windows messages. The MOON Lab API is supplied as source code (written in virtually any procedural programming language), major part of it merely sending MOON Lab-specific messages to the Shell, which serves as presentation server for applications.


From the point of view of the MOON Lab application programmer he uses a full multi-threading (actually two-threading) semantics without real threads.


2.4 MOON Lab system 2.0


The version 2.0 is presently under development but its architecture is developed completely.


Major part of the code of the MOON Lab 1.0 has been rewritten for Windows 95 or NT. Some portions of the code have been ported from the previous version, other have been rewritten entirely, in particular, the user interface and the MOON Lab API.


The user-called part of the API remains virtually the same (version 1.0-portable at the level of source code), but the internal architecture has been changed entirely and essentially based on the WIN32 multi-threading [6].


3 PROGRAM ARCHITECTURE


This section covers features of program architecture, common for all the OOMT codes, but most detailed  consideration concerns the TASKS basic architecture.


3.1 Application programming technique


The programmer of any OOMT application generally has to supply a code for one or more application tasks. At least it includes a constructor, a destructor and a body of the task.


For example, with TASKS library, the application programmer defines a new class descendant from the tTask class. The derived class normally encapsulates all the necessary fields and methods for solving of an application problem.


This derived class must override at least one its virtual method, called Body. Is can be started running concurrently as a separate thread by creating an instance of the tTask subclass defined.


An object, responsible for incorporating of the task in the multitasking mechanism, called TaskManager, is a unique instance of the  tTaskManager class (or its descendant). Its virtual method AddTask accepts a reference of an instance of any tTask-derived class.


The virtual Body method of the tTask class is used to give some useful behavior to the application task. It is never called. Instead, the AddTask procedure prepares a stack space of correspondent task instance for task switching mechanism to jump at first instruction of Body by the nearest switch to the task. A size for the stack is passed as a parameter of the task’s constructor.


Fig. 2. shows base TASKS classes, involved in multitasking. The Booch notation is used [7].
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The only terminal classes, intended to serve as superclasses for user-derived classes are tTask and tTaskManager classes, inheritance from the last one used for implementation of the user-defined task switching or task scheduling strategy (see 3.3, 3.4).


As one can see from fig. 2, an instance of both tTaskManager and tEntry classes serves as a container for collection of instances of tTask (or derived) class. The class tEntry is used for implementation of the queue of the tasks, waiting for the rendezvous with another task (owner of the entry) and for the rendezvous itself (see [3] for understanding rendezvous); each task can own multiple entries.


Each task can be terminated synchronously relative to the code of its body (Body method) via the user interface. Generally, if the body is still running at the moment of termination, the user receives warning message and confirms (or not) termination. For this case, the user-defined destructor for the task class should contain a code to perform some “post-mortal” action of the task. Usually it releases resources allocated by the user-overridden constructor. This is a common principle for all the OOMT codes [5, 6], not only for TASKS programming.


With MOON Lab, an application task is developed as a separate executable file, a Dynamic Link Library (DLL) for version 1.0, and optionally as a normal executable file (.EXE) for version 2.0 (a better choice for debugging). Since classes are implemented differently for different languages or versions of the program development software, they generally are not reusable or inheritable between different executable files. Instead, task body, constructor and destructor are exported from the user’s application executable module, containing full description of the task functioning.


In this way, the user-written executable module can be considered as a full analog of the class, and loaded instance of the module - as an instance of the class.


3.2 Task switching (cooperative multitasking)


The task switching can be caused by different reasons, it depends of the task switching mechanism used.


The task which thread is presently run by the CPU (which is switched in) is referred to as the current task.


With TASKS, the class tTask encapsulates a basic method Delay to gain control to other tasks (if any). It accepts a parameter to specify a delay time in milliseconds. Actually a delay time can be longer than specified, rather, this is a smallest period of time during which the task is inactive. It is set to a special sleeping state and its thread consumes no CPU time during this period.


A task is considered as active if it has been started, not terminated and is not sleeping due to delay or rendezvous.


After the period of delay time expired, the TaskManager awakes sleeping task and switches back to it as soon as possible. If another task is current when the delay time expired, the sleeping task can be switched back significantly later, it depends on the current task, other active tasks and multitasking mechanism currently used.


A zero delay time is a special case. The task is switched out once and then it is switched in back as soon as possible, no sleeping state used. If only one task presently active, a call Delay(0) has no effect.


The task Delay method is the base method for the cooperative multitasking. If no task preemption is currently used (see 3.4), each task must call this procedure from time to time, otherwise all the tasks and the user interface are frozen.


The class tTaskManager encapsulates several pseudo-abstract virtual methods for switching tasks, presently owned by the TaskManager object. Another way of switching task cooperatively is a call to the tTaskManager SwitchTo method. This method accepts a reference to an active task as its parameter and enables caller to switch to a definite task. It is important that it can be called from within any thread, including the case when a task tries to switch to itself. This way of task switching implements another multitasking mechanism called coroutines [2].


Finally, task switching is caused by the task interchange via the rendezvous (see 3.8).


3.3 User-defined task scheduling


With TASKS multitasking system, user-defined multitasking is based on the object-oriented late binding. In particular, to implement user-defined task scheduling strategy,  the user (programmer of an application system) need not dig into the CPU- and system-dependent code of the task switching. Actually, he only needs to lookup a current task queue and to answer the question: “who’s next”?


To do that, tTaskManager encapsulates a pseudo-abstract virtual method, called SwitchNext. It lookups a task queue and switches to next active task, using a call to the SwitchTo method. A simple circular ordering is used by default.


The SwitchNext method is called by the multitasking mechanism each time any task switches out via a call to the Delay method or when task preemption occurs. The only exception is direct call to the SwitchTo method.


The user can modify the default scheduling by overriding the SwitchNext method. Answering the “Who’s next?” question, he can take into account the following data:


a status of each task;


a current index of the task in the task queue;


a time slice (set individually for each task as a parameter of its constructor);


a time each task has actually spent waiting since it has been switched out;


a priority of the task;


any user-defined data, encapsulated in the derived task class (type cast from the tTask to user-derived class should be used).


The last item of the previous list enables to involve any task-specific data in the task scheduling. For example, all the tasks can be subdivided into normal, time-critical and interactive ones. The task scheduling using this specific classification can not be implemented using traditional criterion based on priorities. For example, an interactive task can be switched in only when the related window is on the top.


3.4 User-defined task preemption


Next aspect of the multitasking is the task preemption. The pure preemptive multitasking enables tasks to avoid any task cooperation code. The moment at which the task is switched out is not specified in the code. Instead, the task preemption is interrupt-driven.


Traditionally, the timer interrupt can be used for task preemption. It is caused when the time slice of the task currently run by the CPU is expired. Additionally, the interrupts used by the keyboard and the mouse (input device interrupts) are used for task preemption. The practical significance of this sort of preemption is discussed in 3.5. The use of the timer, keyboard and mouse interrupts for task preemption can be selected by three independent bits of the preemption flag, passed as a parameter of the tTaskManager constructor.


Finally, the user can involve any user-written interrupt handler in task preemption. This is used for real-time processing in handling instrumental measurement hardware.


3.5 Event-driven user interface and multitasking


The OOMT user interface concept allows to use virtually any sort of event-driven object-oriented user interface.


Fig. 3 illustrates the task preemption, caused by some interrupt. To begin with, consider the case of preemptive multitasking with input device interrupts used for task preemption.
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The systems starts execution with the main thread, which has no correspondent task object. This is referred to below as the system task (it is recognized by the SwitchTo method as null pointer passed as its parameter for task reference).


An idle time of the event-driven is used for the task switching. It is done by a call to the Idle method of the TaskManager. This method uses a call to the SwitchTo method to switch to next application task.


Consider special (and practically important) case with only one task presently active. Unless it switches out cooperatively and while nobody touches a keyboard or mouse, it consumes as much as 100% CPU time for its execution. No other task can gain control, including the system task.


When a keyboard or mouse interrupt occurs, the proper interrupt handler perform its usual work (typically writes the hardware event in the buffer), and then switches to the system task. As one can see in fig. 3, it leads to the very beginning of the user interface main loop and it certainly follows a non-idle way, because the hardware event buffer is currently not empty. If next cycle is idle, it switches in the application task again.


So, in this way the user works, say, at a document, running an application task in background. This application task consumes all the CPU time unused by the user interface; the purely interactive system task is never switched in if nobody touches input devices.


(This consideration shows that the idea, described at the very end of 3.3, is not very important. With OOMT all the interactive tasks are generally implemented as a part of the system task. The task objects implement tasks with no synchronous input that is not necessary in event-oriented architecture.)


Case of multiple tasks involves timer-caused task preemption or cooperative multitasking. Normally after processing of the interrupt control returns to the task interrupted. The timer interrupt causes task switching only if more than one active task presents and the time slice for the current task is expired.


3.6 Real-time processing


The scheme of coupling of the user interface and the multitasking mechanism described above is not yet sufficient for real-time processing.


To handle an instrumental interface immediately after it causes an interrupt, some primary processing must be performed by the user-written interrupt handler. At the end of the interrupt handler a call to the universal procedure CalledFromInterrupt is used. Since it is done, the user-written interrupt handler works as if it were an additional input device: it causes task switching in the way described above.


In addition to that, one more aspect should be taken into account for solving of the practically significant measurement or control problem. It involves a task object, programmed as a plan or a scenario for data acquisition or control itself. This sort of task objects requires a special task scheduling strategy, that can be implemented as described in 3.3.


For example, the overridden SwitchNext method should recognize the existence of the instrumental hardware event (caused by interrupt primarily processed) and find out a task related to the corresponding sort of the event. Then it should switch to this task directly instead of processing of the user interface cycle.


We have described technological aspects of the real-time processing for instrumental hardware interrupts. In 4 the significance of this scheme is discussed.


Unfortunately, the OOMT concept of real-time processing described above is hardly applicable to existing operational systems. With existing systems the user generally has no way to substitute default multitasking strategy with his own problem-specific strategy.


For WIN16 API (Windows 3.*) an interrupt handler can be set up at the level of application programming. To affect task switching after interrupt processing some special hacks can be used, but these are based on undocumented usage of process and message priority, involved in Windows task scheduling mechanism [8]. This does not mean task preemption: after interrupt has been processed control returns to the interrupted task, which can grab the CPU for an indefinite period of time until it get a message from its message queue.


WIN32 API (Windows 95 or NT) provides traditional preemptive multitasking using priorities and priority classes (including real-time priority class); interrupts are accessible at the level of system drivers only and hardly can affect task switching mechanism of the system.


Thus, real-time processing under Windows is a significant problem; both MOON Lab versions provide no real-time capabilities.


3.7 Exception handling


All the OOMT codes provide fully functional exception mechanism, similar to that of CLU [9], Ada [2] or Ada 95 [3]. (The C++ try-throw-catch feature, introduced by the draft ANSI C++ standard, gives a more flexible structure for exceptions [10].)


One problem of the system-level or library-level implementation of the exceptions is that exceptions mechanism is non-procedural, so no procedural syntax can be adequate to the structure of the exception handler.


For languages having the build-in exception mechanism another problem is that is can be implemented differently in different languages (or versions of the program development software), so in the multi-language program project an exception raised in one module generally cannot be properly handled in another one. WIN32 API (for Windows 95 or NT) is an exclusion: it provides a build-in mechanism for structured exceptions; exceptions can also be spread through different executable modules.


For TASKS and MOON Lab 1.0 a language-independent exception mechanism has been implemented using low-level programming. For the API special attention has been paid to solve the problem of the procedural syntax, inadequate to exception handlers. The programmer of an application has to follow a certain discipline when using the exceptions.


Each task has its own space for storing a run-time history of registering handlers. Any exception or run-time error caused within its thread (and not handled) does not affect the rest of the application system. This particular task terminates abnormally instead.


3.8 Rendezvous


The rendezvous mechanism implemented for the TASKS software provides almost Ada capabilities.


A significant difference is that if an exception occurs during rendezvous, it is spread in one task only. Besides, timed call [3] is not implemented.


Since a TASKS application can be developed using procedural languages with syntax inadequate to the Ada task entries and selection operators [3], some additional efforts should be paid to use rendezvous. The Ada principle is valid, that a call to entry of a task by another task must not differ from a function (object method) call. The interchange mechanism is hidden in a task, containing entries (instances of the class tEntry). This class encapsulates the queues of calling tasks (see fig. 2) and a code for task manipulations. In particular, it involves task switching between called tasks and its owner task and makes a calling task sleeping by using a special task status.


Note that for an application system using a set of tasks communicating via rendezvous the preemptive multitasking based on timer interrupt may be unnecessary.


For MOON Lab 2.0 the rendezvous mechanism is implemented using WIN32 event primitives.


3.9 Asynchronous process control


Asynchronous process control (APC) is a technique we suggested to enable the user to modify some parameters of the task during run-time synchronously relative to the task [5, 6]. It would be not a problem at all, but the idea of the APC is to make this modification invisible for the code of the task.


The parameters to be modified correspond to the variables of the language used to code a task (restricted set of data types supported). These variables are merely registered as modifiable in the code of the task a valid modification range and other attributes must be specified. The modification can be prohibited or enabled again at any time.


4 THE ON-LINE EXPERIMENT


As an example, consider a simple control system. Consider we need to maintain a pressure for the object of experiment, following the given table of values depending on time. We also must enable the user to break into the progress of experiment; for example, to modify the table of desired pressures during run-time. We must also store the actual values (fig. 4).
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If the pressure is also affected by behavior of the experimental object, we must response in a certain time by moving a piston. This requirement itself does not mean real-time yet. We need a real-time program architecture if there can be several more tasks of this sort, running on the same CPU and, probably with the same instrumental interface, along with general-purpose tasks; the response time for our task must not depend on other tasks.


Some part of processing can be performed out of computer’s CPU, for example, by processors embedded in the instrumental interface (by DSP), but consider we have no this opportunity. This is a typical real situation with interface like HPIB or CAMAC.


How does it work with OOMT?


Processing of the pressure measurements is divided into two stages with intermediate buffering. Primary processing is reading of the last measurement and reprogramming the ADC for digitizing mode. This is performed in handling the interrupt caused by the ADC ready signal. Additionally the interrupt handler stores a value measured in a buffer and places an event at a special event queue (it can be just a counter of events of this sort).


Comparison with the given table of values for pressure, calculation of the proper response, moving the piston and storing data on a disk is implemented as a separate task with sequential body. After each cycle the task is switched out (cooperatively, by calling to the Delay method). 


To enable the user to modify the plan of experiment by editing or replacing of the table the APC mechanism is used in the code of the task (see 3.9).


The scheduling strategy must be overridden (see 3.3) to keep this task sleeping while the event queue is empty.


The task is awaken only when 1) event queue becomes non-empty or 2) the period of time given by the table of pressure and time values is expired.


The task is awaken by the interrupt handler. It generates an event when the measured value of pressure significantly differs from desired  and causes switching in the task as described in 3.4 and 3.6.


5 CONCLUSION


The OOMT architecture can serve as a conceptual prototype for development of new operation systems or application systems, capable of real-time processing, suitable for both data acquisition or control applications and general-purpose applications.


For today’s development of application programming the usage of the existing software platforms is more important. The concepts of OOMT enable to develop application systems convenient for users and programmers of applications. The usage of most elaborated OOMT-related codes, like MOON Lab 2.0, is a good choice for solving of several relatively small independent problems on a shared computer and linking them together within the same computer or a network.
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