SHELL WE REPLACE LabVIEW® WITH�OBJECT-ORIENTED INSTRUMENT ? *

S. A. Kryukov, Institute for Nuclear Research, Moscow, Russia

Abstract®*

The MOON Lab, new program tool developed at the Moscow Meson Factory (INR), is considered as an object-oriented replacement for the LabVIEW. (“MOON” stands for “Multitasking Object-Oriented Network”.)

Present paper covers several novelties of programming technologies, introduced by MOON Lab. We argue in favor of MOON Lab object-oriented and event-oriented approach to measurements and control problems. We believe that this approach is more adequate to real world, than concept of data flows or virtual instruments.

Our experience in solving problems for beam diagnostics and numerical simulation problems using MOON Lab enables to analyze its advantages and drawbacks.

Component-based graphical programming is also discussed from the point of view of reusability. Components-based approach generally provides design-time reusability and greatest flexibility and scalability. MOON Lab approach gives less flexibility but is also provides high degree of run-time reusability. It is a better choice for solving of several relatively small independent problems and linking them together via a network.

1 INTRODUCTION

The MOON Lab system has been first presented in [1]. Present paper discusses MOON Lab features and program architecture in more details and also extended architecture of a new version for Windows 95 and NT presently under development.

MOON Lab, originally projected mainly for solving problems for beam diagnostics, is an environment for running measurement and monitoring applications on a local area network or a single computer. These MOON Lab-specific applications can be developed with an easy-to-use interface library supplied. This software is presently available for Microsoft® Windows™ 3.11 and all compatible versions for IBM PCs. Major part of the code has been ported or rewritten for 32-bit Windows 95 and Windows NT systems.

Strong Object-Oriented Programming (OOP) approach is used for the MOON Lab design. The interface library can be linked in using many programming languages without OOP capabilities. It is presently supplied as source code written in C, C++ and Pascal; a FORTRAN interface is presently under development. For the interface usable with non-OOP languages every possible effort has been made to follow the OOP style itself.

2 WHY MOON LAB?

We have decided to develop a new laboratory software system for several reasons.

Special program tools like LabVIEW are too expensive for our purposes; with MOON Lab we use general-use compilers only; one license per developer is required.

We have to use various types of measurement and data acquisition hardware, including non-standard ones and those unfamiliar to brand-name software.

All the code of the application must be debugged under a stepwise debugger, including the CPU-level code of, for example, low-level device drivers. It must be debugged as a part of simple debug applications, as well as a part of a complete application.

Different programming techniques must be used for development of the entire application, including sequential and event-driven programming.

We have many applications of the same type; they must to be developed using uniform approach with maximum reusability.

3 PROGRAM ARCHITECTURE

We have two MOON Lab versions, each one being actually independent software with analogous Application Program Interface (API). Version 1.0, developed using WIN16 API, can be run on Windows 3.*, Windows 95 or NT; whereas 32-bit version 2.0, developed using WIN32 API, can be run on Windows 95 or NT only (and cannot be run on Windows 3.* with WIN32s). Program architectures for these versions differ significantly; version 2.0 is of better performance and easier for developers of applications, but for final users both versions have virtually the same capabilities.

�EMBED Unknown���

Fig. � SEQ Fig. * ARABIC �1� Layer structure of MOON Lab:

1 - OS layer

2 - MOON Lab layer:

ML API 1.0 - MOON Lab API v. 1.0

ML API 2.0 - MOON Lab API v. 2.0

ML 1.0 - instance of MOON Lab Shell (presentation server) v. 1.0

ML 2.0 - instance of MOON Lab Shell v. 2.0

ND - MOON Lab network dispatcher (presently under development)

Dr - instrumental hardware driver

3 - application layer:

a1 - WIN16 MOON Lab application (User Process for v. 1.0 of the API, .DLL)

a2 - WIN32 MOON Lab application (for v. 2.0, .EXE)

app - other Windows applications.

The analogous figure can be shown for multiple MOON Lab application of version 1.0, running on Windows 3.*.

To run a MOON Lab application it is necessary to load it via a special program, referred to below as the MOON Lab Shell. Application to be run under the Shell is referred to as the User Process. The User Process is written by user with use of the interface library, referred to as the MOON Lab API (Application Program Interface). Multiple User Processes can be run concurrently on the same computer, each one as a part of a separate instance of the same MOON Lab Shell.

Fig. 1 shows several MOON Lab applications of both versions running concurrently on Windows 95 or NT.

The MOON Lab Shell works as a GUI (Graphical User Interface) server for the User Process. It provides a flexible program interface to advanced event-oriented graphics.

3.1 Application programming technique

Programming of MOON Lab applications is not graphical, it is based on a traditional textual coding. Virtually any procedural programming language can be used.

The developer of a MOON Lab application generally generates an executable module with use of the MOON Lab API library. This module must export at least one function, named UserProcess, containing sequential scenario of the measurement process itself and its presentation. This function uses calls to MOON API for graphical presentation via the MOON Lab Shell. Additionally can be exported UserConstructor and UserDestructor and some other functions (see below).

In version 1.0 of the software the executable file of the User Process is developed as a Windows DLL (Dynamic Link Library) running as part of the Shell task.

In version 2.0 the executable file of the User Process is developed as a normal executable file (.EXE), running as separate task. MOON Lab API 2.0 is supplied as a DLL with much more sophisticated code than that of API 1.0. On entry this code attaches User Process to correspondent instance of MOON Lab Shell, creates additional thread to run UserProcess function and creates resources for inter-task communications.

The version 2.0 is easier for debugging. A user process can not be debugged without the MOON Lab Shell. With version 1.0 the application programmer can not use his IDE debugger. Instead, he must create a .DLL file containing necessary debug information and run the MOON Lab Shell under the debugger, setting a special debug option and a name of his MOON Lab application in a parameter string. In this case a message box appears and a debug interrupt occurs just after the application module is loaded. The programmer must load a debug information for his module, set a breakpoint on a code he wants to debug and continue execution of the MOON Lab Shell. After the breakpoint is reached he can continue debugging step-by-step, observing effect of each instruction on MOON Lab Shell windows.

With version 2.0, a special debug mode can be used. When it is invoked via the MOON Lab Shell menu, no application is loaded, the system is waiting for activation of any application instead. When the programmer runs any of the MOON Lab-specific applications, via the debugger or not, it is connected to this particular instance of the Shell as if it was loaded within it. Neither two different instances of the Shell can enter the debug mode (waiting for activation of an application) simultaneously, nor another application can be connected to the instance of the Shell, presently connected to an application.

For the connected application the process of debugging does not differ from usual. The programmer sets a breakpoint on any instruction of any exported function. The process of connection is hidden in the code of the API and is complete when the breakpoint is reached.

3.1 Multitasking issues

The functioning of the User Process under the MOON Lab Shell requires both these parts of the code to run concurrently and interchange mutually. With WIN32 API this is implemented via multi-threading (see below), but under WIN16 the implementation of the real multi-threading is faced with significant problems (see [2]).

Note that the code of the User Process is sequential and the code of the Shell is purely event-driven. The known way to couple these sorts of codes in a common task is to lookup a message queue periodically at the sequential code. The tasks are switched by Windows 3.* at the call to PeekMessage or GetMessage function. This approach is used, for example, for implementation of the sequential console applications under the event-driven Windows 3.* environment.

For version 1.0 MOON Lab API is very simple and is supplied entirely as source code. Most API calls merely sends messages to the appropriate instance of the MOON Lab Shell in the format specified in the API. A special function, called Delay, is used to enable Windows task switching. With non-preemptive (cooperative) Windows 3.* multitasking this is necessary to gain control to other tasks and keeping user interface of the MOON Lab Shell responsive. Additionally, calls to Delay function serve as synchronization points, at which status of the User Process and its parameters can be modified by the user via MOON Shell (see 3.2).

Fig. 2 represents the User Process running under the event-driven MOON Lab Shell for version 1.0.

�EMBED Unknown���

Fig. � SEQ Fig. * ARABIC �2� MOON Lab 1.0: Event-driven user interface and sequential code of the User Process. Small rounds represent points of synchronization - calls to the Delay function. Filled boxes represent the code exported by the user.

The important fact is that the existence of the event-driven code of the Shell is hidden from the User Process, because calls to the Delay function do not change its structure.

With version 2.0, the threads are used (fig. 3). Note, that parts of the code of the application are run in different threads. This is because the constructor can be called asynchronously relative to the User Process (when the user decides to terminate the process, see 3.2), so the destructor should be a part of event-driven code.

�EMBED Unknown���

Fig. � SEQ Fig. * ARABIC �3� MOON Lab 2.0: Inter-task com�mu�ni�ca�ti�ons. APC - Asynchronous Process Control event (see 3.2). Filled boxes represent the code exported by the user.

3.2 Asynchronous process control

Asynchronous process control (APC) is a technique we suggested to enable the user to break into the behavior of the task during run-time asynchronously relative to the task [1, 2].

The user’s decision to start, pause, continue or close a process is a special aspect of the APC. The user can do this at any time via the Shell (see fig. 4).

�EMBED Unknown���

Fig. � SEQ Fig. * ARABIC �4� State diagram of the MOON Lab Shell instance, running the User Process.

The user-written “destructor” of the user process (see 3.1) is used to implement the proper “post-mortal” action after the asynchronous closure of a process. The UserDestructor function should be exported by the code of the user MOON Lab application.

More important aspect of the behavior of the process is related to the process parameters.

Traditionally, parameter input is a difficult problem of practical programming, especially in the field of computer-guided experiments. In research experiments it is difficult to decide which data should be changeable during run-time. The event-oriented approach does not solve this problem completely, because many experiments have a complex but strict sequential scenario and must be treated as “statement-driven” or “code-driven”.

MOON Lab introduces a special technique of registering of the process parameters. Parameters to be modified during run-time are registered by the User Process and stored by the Shell in a special user-accessible list. Each parameter corresponds to a variable of the programming language used. Integer, floating-point and enumerated data types are supported.

For every parameter registered its name and comment is specified. For each numeric parameter a range of valid values is also specified.

The fact of registering does not affect the User Process behavior until the user tries to modify a parameter. After he clicks an item on the list of parameters, the proper parameter editor (depending of the parameter type) is used to modify the parameter selected. After successful modification (in particular, if the value entered is within the parameter range) the User Process continues execution using new value of the parameter.

We tested this technique for both beam diagnostic tasks and numerical simulation problems and proved its advantages in comparison with the traditional approach.

For special purposes the User Process can synchronize its execution with the input of parameters using a call to the MOON Lab API to pause execution and possibly to send a text message to user. In this case the user can continue execution of the User Process via a menu or a toolbar of the Shell.

3.3 Event-oriented features of process

From the above discussion one can understand that the idea of the User Processes is to couple a “code-driven” scenario of an experiment with the event-driven structure of the MOON Lab Shell.

Some event-oriented features of the User Processes are also available and useful. To use these features the programmer of a process has to supply callback procedures to be called asynchronously relative to the User Process.

There are several points where the callback can be used:

1) A callback procedure can be specified for any registered parameter (see above). It is called each time parameter is modified, if its new value differs from previous. For example, if graphical data is updated in an operational loop from time to time, it also might be useful to update it immediately after modification of some parameters.

2) During run-time a set of push-buttons can be created. A user-defined callback procedure is called immediately after the user presses or clicks a push-button. Its behavior should depend on a push-button identifier.

3) A special case of the callback is the process destructor performing some “post-mortal” actions (see above).

3.4 Exception handling

MOON Lab enables the User Process to use structured exception handling, similar to that of CLU [3], Ada® [4] and Ada-95 [5] programming languages. The C++ try-throw-catch feature, introduced by the draft ANSI C++ standard, gives a more flexible structure for exceptions [6].

One problem of exceptions for MOON Lab is that many languages do not have this feature. Another problem is that exception handling is not compatible at the level of executable files. That means that if the User Process raises an exception and does not handle it, it cannot be handled properly within the MOON Lab Shell. This is because the User Process is a separate executable (possibly written in another language than the Shell).

This problem has been solved by implementing the fully functional exception mechanism with the use of language-independent low-level programming.

The author’s contribution is a clear syntax put forward for the User Process code of an exception handler. It allows the implementation of the non-procedural exception semantics via appropriate calls to the MOON Lab API, accessible with most procedural languages

4 DISCUSSION

4.1 Data acquisition and controls

The LabVIEW approach to the data acquisition is generally restricted by the inquiry strategy of acquisition. This is closely related with LabVIEW programming paradigm, that is actually a specific type of data-driven programming with parallel execution (that can be called neither cooperative nor preemptive multitasking). This software is mainly intended for solving of simple standard problems.

The MOON Lab approach to the on-line experiment is motivated in details in [2]. The nature of interaction with the object of experiment is adequate to the event-driven or interrupt-driven paradigm; the nature of the plan of experiment is adequate to sequential code.

The data flow approach is adequate to the problem of data acquisition only at very restricted conditions: regular cyclic measurements, absence of faults, uniform processing, etc.

4.2 Programming technique

We believe that different problems should be solved using different techniques, adequate to the problem. In particular, graphical programming is good for design of entities, having graphical appearance, for example, of the graphical controls.

When we link two non-visual LabVIEW objects with the wire, we always think about using traditional programming.

The only advantage of the graphical programming on a LabVIEW block diagram is an access of the control or indicator. But the MOON Lab APC is much easier for programming, more flexible and gives much better performance (see above).

The advantage of LabVIEW as a rapid development tool (RAD) in comparison with MOON Lab can be achieved on a relatively small project only.

4.3 Performance

Consider only one aspect of the performance: interactive input of data. LavVIEW provides an analog of the APC, based on the data flow. To support modification of parameters some inquiry technique must be used: the control should be visited by the data flow each time modification should be possible. This is performed repeatedly even nobody touches the control.

This problem could be solved by using any event-oriented user interface. In fact, this sort of interface is actually used for the implementation of LabVIEW, but with its data-driven technology all the event-oriented advantages are lost completely.

4.4 Graphics

The LabVIEW component-based design provides wide range of good-looking controls and forms for data presentation, that gives a good flexibility. As a RAD tool it is a good choice.

The event-oriented and object-oriented MOON Lab approach to the graphical interface is very different and gives a significant advantage in comparison with LabVIEW.

For example, consider plotting of data. In contrast to LabVIEW, with MOON Lab only one type of plot window can be used. At design time it is impossible to set up a size for this window, a number or presentation of labels, grid, etc. The only attributes set up at the code of the User Process are the actual and default range for axes. All other attributes can be set by the user or calculated automatically at run-time, depending on the actual sizes of the window and the actual range for the axes. So the programmer of an application need not care about it.

Besides, this type of the MOON Lab plot window provides any number of plots of different types with any number of point in each, any plot and point being accessible from the code of the User Process. This is implemented with use of the object-oriented polymorphism. The plots serve as containers for data and not related with any collections of the user’s data, such as arrays.

The only disadvantage is that the MOON Lab graphical objects look very similar.

4.4 Reusability issues

Components-based approach of the LabVIEW provides design-time reusability. MOON Lab approach also provides high degree of run-time reusability.

The code of a typical MOON Lab application is significantly smaller than the code of the MOON Lab system. This code is shared by all the MOON Lab applications and instances of the MOON Lab Shell, running concurrently on the same computer. Thus, all the MOON Lab components, such as graphical controls are reusable at run-time, that significantly saves system memory.

5 CONCLUSION

MOON Lab can serve as a replacement for LabVIEW for any newly developed application.

Future development of the MOON Lab technology should probably involve the component-based design of applications and improvement in remote control.

REFERENCES

S. A. Kryukov, ‘New Programming Technologies for Beam Diagnostics’, Proc. EPAC’96, CERN, Vol. 3, p. 1781 (1996)

S. A. Kryukov, ‘Real-time Problem and Object-Oriented Multitasking’, this Workshop

Barbara H. Liskov, Alan Snyder, ‘Exception handling in CLU’, IEEE Transactions on Software Engineering SE-5(6), pp. 546-558 (1979)

Narain Gehani, ‘Ada: an advanced introduction including Reference manual for the Ada programming language’, London: Prentice Hall, 1984

Annotated Ada Reference Manual. Language and Standard Libraries. International Standard ISO/IEC 8652: 1995(E)

Bjarne Stroustrup, ‘The C++ Programming Language’, 2nd Edition, Reading, Mass.: Addison-Wesley, 1991 (repr. 1995)

® LabVIEW is a registered trademark of NATIONAL INSTRUMENTS

* Work partially supported by the Russian Government

® Microsoft is a registered trademark of Microsoft Corporation

™ Windows, Windows 95 and Windows NT are trademarks of Microsoft Corporation

® Ada is a registered trademark of the U. S. Government, Ada Joint Program Office

