PC-VME Network Solutions

A.Kadnikov, S.Kuznetsov, V.Frantsev

Kurchatov Synchrotron Radiation Source, Kurchatov Institute, 123182

Moscow, Russia

Abstract

The paper describes some proposals and solutions to implement PC-VME connections at the SIBERIA synchrotron radiation source complex (2.5 GeV) [1]. The control system high level software runs on PC under Windows 95 or Windows NT operation system and includes applications based on commercially available instrumentation systems (LabVIEW,etc.) and applications written by control staff. The low level software runs under OS-9 operation system on MC680x0 and includes real-time applications. The connections between computers based on Ethernet network. Intertask communications for real-time applications used OS-9/Internet Library and OS-9/Internet Socket Library. Intertask communications for high level applications used Socket library and Socket classes from MFC 4.0. For network communications the special library was developed. The main functions of the library: -- asynchronies intertask connections; -- asynchronies data exchange; -- intertask synchronization; -- installation the call-back functions for events; -- TCP/IP and UDP implementation.

1. Introduction

There is standart network solution when workstations and VME crates are connected directly to Ethernet network. SIBERIA-2 control system also uses this hardware configuration. But instead of workstations running UNIX-like operation systems we use IBM PC running MS Windows. So it has taken some software to implement connection between MS Windows applications and OS/9 tasks by means TCP/IP. So for network interface we developed the special FLib library.

2. FLib library

2.1 Flib basic concept

	The library defines program interface for tasks running under MS Windows or OS/9. It is based on Windows Sockets under MS-Windows and on Internet Support Package under OS-9 (fig. 1).

�EMBED MSDraw * MERGEFORMAT���

Figure � SEQ Рисунок * ARABIC �1� FLib up-socket library.

	The main functions and advantages of the library are:

		- asynchronies intertask connection;

		- asynchronies data exchange;

		- same program interface under MS-Windows and under OS-9;

		- compact;

		- intertask synchronization;

		- TCP/IP and UDP implementation;

		- one can connect socket and asynchronies' event function.

	To connect two processes one should create program channel with two entries between them through which information exchange will be done. Any connection is uniquely identified by pair of addresses consisting of IP addresses of host and remote computers and names of entries of the program channel. Connection uses client/server model, so each entry should be client or server. A client entry may be connected only to one entry at remote computer. A server entry may be connected to several entries. This asymmetry is present only during creation of program channel. Any entry of channel has full-dublex properties.

2.2 Flib functions (not complete)

2.2.1 FInit()

	First called function. FInit function nitialies Flib library.

2.2.2 FUnInit()

	FUnInit function frees system resources when you quit.

2.2.3 FGetLastError()

	This function returns error code of last failed operation.

2.2.4 FTCPEntry(char FAR* ipAddr, char Far* entryName, int Mode)

	FTCPEntry function creates task’s entry on host computer and returns handl to it. Mode is SERVER or CLIENT.

2.2.5 FCreateRemoteID(char FAR* ipAddr, char Far* entryName)

	Function creates representation of task entry on remote computer and returns handle to it.

2.2.6 FConnect(u_short hHost, u_short hRemote, HWND hChannelWnd)

	FConnect function creates connection between two entries. hChannelWnd is handle to window getting message PM_IOCOMPLETE.

2.2.7 FSetProcChannel(u_short hChannel, HWND hChannelWnd)

	Function sets procedure processing asynchronous I/O operations.

2.2.8 FReceive(u_short hChannel, char Far* buf, int bufLen)

	Function receives informaton from given channel to given buffer.

2.2.9 FSend(u_short hChannel, char Far* buf, int bufLen)

	This function sends information from given buffer to given channel.

2.2.10 GETSTATUSCHANNEL(),GETSTATUSREAD(), GETSTATUSWRITE()

Macros for status getting

	GETSTATUSCHANNEL(hChannel) 	- channel status

	GETSTATUSREAD(hChannel)		- READ operation status

	GETSTATUSWRITE(hChannel)		- WRITE operation status

2.3 Example for MS Windows

#include "flib.h"

//...

#define LENBUF		256

char		*HostIP = "192.9.200.2";

char		*RemoteIP = "192.9.200.150";

char		*HostEntry = "HostEntry";

unsigned short	hHostEntry;

char		*RemoteEntry = " RemoteEntry";

unsigned short	hRemoteEntry;

unsigned short	hChannel;

char 		Buff[LENBUF];

// ...

	int answer;

	if((answer = FInit()) != NULL)

		return answer;

	hHostEntry = FTCPEntry(HostIP, HostEntry, CLIENT);

	if(hHostEntry == NULL)

	{

		answer = GetLastError();

		FUnInit();

		return answer;

	}

	hRemoteEntry = FCreateRemoteID(RemoteIP, RemoteEntry);

	if(hRemoteEntry == NULL)

	{

		answer = GetLastError();

		FUnInit();

		return answer;

	}

	hChannel = FConnect(hHostEntry, hRemoteEntry, HWindow);

	if(hChannel == NULL)

	{

		answer = GetLastError();

		return answer;

	}

	

// ...

	answer = FSend(hChannel, Buff, LENBUF);

// ...

	answer = FReceive(hChannel, Buff, LENBUF);

// ...

	FUnInit();

// ...

// Window callback function getting message PM_IOCOMPLETE

LRESULT CALLBACK _export

WinProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

// LOWORD(lParam) -- channel handle

{

	if(msg == PM_IOCOMPLETE)

	{

		switch(wParam)

		{

		case PM_CONNECTCOMPLETE:

			// channel is ready to use

			// ...

		break;

		case PM_READCOMPLETE:

			// one can process received data

			// ...

		break;

		case PM_WRITECOMPLETE:

			// ...

		break;

		case PM_ERROR:

			// ...

		break;

		case PM_TIMEOUT:

			// ...

		break;

		}

	}

	// Other windows messages

	// ...

}

2.4 Example for OS/9

// ...

char	*HostIP = "192.9.200.150";

char	*RemoteIP = "192.9.200.2";

unsigned short	hHostEntry;

char		*HostName = "HostName";

unsigned short	hRemoteEntry;

char		*RemoteName = "RemoteName";

unsigned short	hChannel;

#define LENBUF 256

static char	Buff[LENBUF];

int CommandChannelProc();

// ...

	int answer;

	if((answer = FInit()) != 0)

	{

		answer = FGetLastError();

		return answer;

	}

	if((hHostEntry = FTCPEntry(HostIP, HostName, SERVER)) == NULL)

	{

		answer = FGetLastError();

		FUnInit();

		return answer;

	}

	if((hRemoteEntry = FCreateRemoteID(RemoteIP, RemoteName)) == NULL)

	{

		answer = FGetLastError();

		FUnInit();

		return answer;

	}

	if((hChannel = FConnect(hHostEntry, hRemoteEntry,

				CommandChannelProc)) == NULL)

	{

		answer = FGetLastError();

		FUnInit();

		return answer;

	}

// ...

	answer = FSend(hChannel, Buff, LENBUF);

// ...

	answer = FReceive(hChannel, Buff, LENBUF);

// ...

FUnInit();

// ...

int CommandChannelProc(Msg, hChannel, Par3, Par4)

WORD		Msg;

unsigned short	hChannel;

WORD		Par3;

DWORD	Par4;

{

	switch(Msg)

	{

	case PM_CONNECTCOMPLETE:

		// channel is ready to use

		// ...

	break;

	case PM_READCOMPLETE:

		// one can process received data

		// ...

	break;

	case PM_WRITECOMPLETE:

		// ...

	break;

	case PM_ERROR:

		// ...

	break;

	case PM_TIMEOUT:

		// ...

	break;

	}

}

3. LabVIEW to OS-9 software interface

	The LabVIEW system is very popular in the instrumentation applications. In order to examine possibilities of the Flib library we tried to connect powerful LabVIEW graphical interface to real time applications. The hardware based on standard Ethernet network. The structure of complex presented at figure 2.

�EMBED MSDraw * MERGEFORMAT���

Figure � SEQ Рисунок * ARABIC �2�. LabVIEW to OS-9 task connection.

	The high level software runs on PC and includes LabVIEW application and dedicated software server named LVVME. This server is MS-Windows application and provides interface between LabVIEW applications, data base and data-acquisition programs. Intertask communication used standard MS-Windows Dynamic Data Exchange (DDE) protocol. Connection to real-time module based on the FLib library. The PC-level software is presented at figure 3.

�EMBED MSDraw * MERGEFORMAT���

Figure � SEQ Рисунок * ARABIC �3�. Structure of the LVVME server

4. MS Visual C++, MFC 4.0 for Windows 95 and NT

	When we started this work our PC’s run MS Windows for WorkGroups 3.11. We developed MS Windows applications using Borland C++ 4.0 and OWL 2.0. There was not special Windows Sockets support and Flib library was used. Now our PC’s run Windows 95 and NT. For developing MS Windows applications we use MS Visual C++ and MFC 4.0 with powerfull support for Windows Sockets. So one can use either CSocket from MFC or Flib as he will. For developing OS/9 tasks we continue using Flib.

5. References

[1] V.N. Korchuganov et al., NIM 208 (1983), pp.11-18.

� PAGE �6�

