
Implementing Distributed Controlled Objects with CORBA
Mark Plesko, J. Stefan Institute, Ljubljana, Slovenia

e-mail: mark.plesko@ijs.si

Abstract

The heart of the control system implementation of the
light source ANKA is an object model of devices. It is the
Accelerator Control Interface (ACI), a language
independent collection of interfaces based on network
distributed objects using the CORBA standard. All
common accelerator components such as power supplies,
vacuum, RF, position and current monitors are defined by
means of functions and parameters. The devices are
described according to CORBA with the Interface
Definition Language (IDL), which presents a language-
independent way of defining object interfaces. Each
controlled parameter, called device property, is an object
by itself, implementing atomic actions such as get/set,
increment/decrement, etc. All constants related to a
property such as min/max, name, description, etc. are
obtained from the property directly by means of remote
methods - no direct database access is necessary. Values
of the properties are updated asynchronously by means of
monitor objects. The ACI is meant to be a standardised
interface so that applications and pieces of control
systems can be hooked to it from either side. The ACI
does not replace existing control system architectures and
frameworks but rather tries to use their features in order to
be as compatible as possible to those systems.

1. INTRODUCTION
The Accelerator CORBA Interface (ACI) [1,2] defines

controlled devices (e.g. power supply, current monitor,
vacuum pump, etc.) as network objects that are remotely
accessible from any computer through the established
client-server paradigm. The underlying communication
mechanism is based on the Common Object Request
Broker Architecture (CORBA), the state-of-the-art
standard for remote objects. This paper assumes that the
reader has basic knowledge of CORBA and the concepts
behind it, which can be found best on the many links on
the Web[3,4].

The ACI is meant to be a standardised interface so that
applications and pieces of control systems can be hooked
to it from either side. The ACI does not replace existing
control system architectures and frameworks. The ACI
attempts to build a model of devices that are commonly
used in all accelerators. It is the largest common
denominator that can be found among different types of
accelerator facilities. The ACI is only a definition of
device interfaces with the use of IDL, not a definition of
an API. An API with more powerful or sophisticated
features can be built atop of the IDL interfaces, or even

replace the CORBA protocol with a proprietary scheme.
However, the IDL interfaces have been defined such that
it is possible to perform all necessary control actions just
by direct CORBA connections to the ORB that exports
the IDL device interfaces. The idea behind this approach
is that it is not necessary for the client to load any special
API library – any CORBA ORB can find devices on the
net and communicate with them.

The main design goals of ACI are:
• Rely on pure CORBA only: don’t be language or

system specific; don’t assume extra functionality in
an API library.

• Enforce strong type checking wherever possible.
Illegal commands should be discovered already
during compile time. Run-time parsing of
commands through constructs like
send(“command”) must be avoided. Generic
applications can use the introspection capabilities
of CORBA (e.g. Interface Repository, Dynamic
Interface Invocation, etc.) instead.

• Exploit the object paradigm: the object itself is
responsible to provide all data that is relevant to it.
Avoid therefore direct access to database servers;
leave this to the implementation.

• Don’t try to define a generic interface for any
possible control system. Specialise on the
definition of accelerator objects with the
functionality that is common to all accelerators.

• Define object interfaces; don’t prescribe their
implementation and don’t provide client-side
functionality. The ACI is merely a hook to the
underlying control system.

• Don’t allow the client to manipulate control system
behaviour. Assume rather that reasonable default
values are provided by the system managers
through control system configuration tools.

• Use well-proven concepts from existing accelerator
control systems.

• Base data transfer on asynchronous calls assuming
that all client and server host operating systems are
multithread capable as is necessary for GUI-based
applications. Keep synchronous calls just for
compatibility with legacy systems.

• Use only the core CORBA without CORBA
services, because existing ORB implementations
do not cover all services yet. But keep to the
CORBA interface names for methods that
implement the same interface contract.

• Encourage site-specific additions through interface
inheritance instead of providing generic bypasses

mailto:mark.plesko@ijs.si

to strong type checking. However, all interfaces
that are defined in the ACI must be implemented at
a given site, because client applications from other
sources rely on them. Clients written on site can
still use the added functionality without penalty.

• A technical issue inspired by Java: pass all
parameters to methods by value; in IDL this means
that all parameters are declared as “in”. In order to
save space, the “in” keyword is omitted in all
definitions in this text.

Great care has been taken to be as close as possible to
existing control system frameworks like EPICS, CDEV,
ACOP, TACO, DOOCS, etc. Many concepts were
actually taken directly from one or several of those
frameworks.

2. DEFINITIONS
A device is a CORBA object that corresponds to the

model of a physical device, e.g. power supply, vacuum
pump, current monitor, etc. The device is the basic entity
of the ACI, because it is the most natural concept for
modelling physical entities in an accelerator. Commands
that are executed on a device, like on, off or reset are
referred to as methods of the device. Each device has a
number of device properties that are controlled, e.g.
electric current, status, position, etc. Properties, which are
also defined as objects in the ACI, are referred to as IDL
attributes of the device. Properties are distinguished by
type (integer, double, etc.) and by being read-only or
read-write objects. Each such “property object” has
specific characteristics, e.g. the value, the minimum, etc.
The methods of a property allow to retrieve or modify
these characteristics: get(), set(), minVal(), etc.

Finally, a device has resources, which are
implementation dependent static key-value pairs, like
“position”-“sector 3”, “interface”-“analog 16 bits”, etc.
Resources are not used by the ACI and by generic
applications. However, they are provided as a generic way
to retrieve information that is not covered by the ACI
from a database.

Most of the device commands and property methods
are executed asynchronously by the remote object. The
results of the operations are communicated to the client by
means of a callback. A callback is an object interface that
must be implemented by the client, so that it can be
invoked by the remote object. During this process, the
remote object functions as a client and the client performs
as a server.

A device server is a CORBA ORB that implements one
specific device interface. A device server usually
communicates with the hardware via VME, fieldbus, or
similar. Note that devices of the same type, i.e. having the
same IDL interface, can exported by several different
device servers, residing on different hosts. A typical
example is an accelerator complex with an injector and a

storage ring. The device server for the injector exports the
power supplies of the injector, while the device server for
the storage ring exports the power supplies of the storage
ring. Both types of power supplies have the same IDL.

3. DESIGNING THE OBJECT MODEL
When designing the object model, i.e. defining our

objects and their relations, we have to decide which things
from the real world our objects correspond to.
Furthermore, we have to determine the way to
communicate with objects.

These are design decisions, which often depend on
taste. However, a proper and consistent design allows for
efficient coding and for seamless interconnection among
the individual parts of the control system. An object
model that is close to the real world is much more
intuitive to programmers, thus requires less learning and
results in fewer mistakes.

3.1 Devices and Their Properties are Objects

We believe that the most human-oriented way is to
represent each accelerator device with a respective object.
Such a concept is seen best in a graphical control panel
(figure 1).

Figure 1: The elements of a control panel relate to the
properties of one accelerator device, a magnet power
supply.

CORBA allows very fine-grained definition of objects
and their properties. With a control system we control
accelerator devices, such as power supplies, beam
position monitors, etc. So it is natural that we represent
those devices in the computer with objects. In the
network, they become CORBA objects.

ps.getADC() ps.getDAC()

ps.setDAC()ps.getStatus() ps.off()

The following example analysis of a power supply
shows how a device object looks and what kind of
properties it has.

Table 1: properties and commands of a power supply:
Property Type Access
ADC: double Read only
DAC: double Read/write
Status bits Read only
Command Input type Return value
on(): none void
off(): none void

We see that properties have different types and also
differ in whether they are read-only or also can be written
to. But there is more to properties. A property, such as
power supply current, has properties of its own: a
minimum, a maximum, a description, units, etc. To avoid
confusion, the properties of properties are called
characteristics.

In most cases, all properties have the same type of
characteristics. There is a difference between read-only
and read-write properties, as the former have no command
to write. Another difference is between properties of type
double and type bits (actually an unsigned integer
containing a bit pattern), as the latter have no minimum or
maximum. But all these differences can be systematized
into a matrix of few classes:

Table2: A matrix of primitive types of control
properties
TYPE double bit-pattern enumerated
readonly ROdouble ROpattern ROenum
readwrite RWdouble - RWenum

We can add another dimension to the table by adding
arrays, or sequences, respectively, of those primitive
types. Sequences are used to transmit arrays of data.
Usually they do not correspond to a single property but
rather to a collection of properties of the same type.

The type char is not provided on purpose. It is not
necessary in most cases, anyway. Most often, chars are
used in serial communications, where values or status are
read/written in ASCII mode, but need to be converted at
some point. Thus by avoiding the char type, we force the
implementers of the control system that chars are
immediately converted at the device server level or even
below. The purpose, why char is not supported, becomes
now obvious: the property type should match the device
property and not any low-level I/O protocol such as a
serial link. If it is unavoidable to send single characters to
a device then they can sent either via an enum property
and then converted at the server level into strings or via a
dedicated command with a parameter of type char.

We see that the concept of properties is quite complex.
It is again only natural, that properties are modeled

through objects and not as simple values. The value of a
property is accessed or changed via the methods get() and
set(). If the property is read-only, then it only has the
method get(). The minimal allowed value is obtained via
the method minVal(), etc.

In first approximation, the properties of different type
differ only in the type of the value (RWdouble.get()
returns a double, ROpattern.get() returns an unsigned int),
but are the same otherwise, e.g. all properties have a
method description() which returns a string with the
description of the property – the property current of the
device power supply could have the description
“PS_Q3A_SR/current”.

Read-only and read-write properties of the same type
have actually more differences, although the value types
are the same. Still it makes sense to define a common
superclass. As example the superclass Pdouble and its
subclasses RWdouble and ROdouble, are shown in table
3. Some methods that use concepts introduced later in
section 3.3 have been omitted for clarity.

Table 3: The IDL definitions for double properties
interface Pdouble {

void get(CBdouble cb);//via callback
double getSynchronous(...);
long getHistory(...);
... // monitors, see section 3.3
double defaultValue();
double graphMin();
double graphMax();
double minStep();
unsigned int resolution();
string description();
string format();
string units();

}

interface ROdouble : Pdouble {
... // alarms, see section 3.3
double alarmLowOn();
double alarmLowOff();
double alarmHighOff();
double alarmHighOn();

}

interface RWdouble : Pdouble {
void set(double value, CBvoid cb) ;
oneway void setNonBlocking(double v)
Completion setSynchronous(double v);
void increment(...);
void decrement(...);
double minValue();
double maxValue();

}

Once the properties have been defined, it is rather
straightforward to define the individual devices. Table 4
shows an example of a magnet power supply: it has three
properties and three explicit commands. Some basic
functionality such as device name, position, etc. is
inherited from a superclass called Device, which can keep
also system-related data such as security. For brevity’s
sake, the Device class is not discussed here.

Table 4: The IDL description of a power supply:
interface PowerSupply : Device {

// properties
readonly attribute RWdouble current;
readonly attribute ROdouble readbck;
readonly attribute ROpattern status;
// commands
void on(CBvoid);
void off(CBvoid);
void reset(CBvoid);

}

A simple program that switches the power supply on,
checks for status errors and sets a current is demonstrated
in table 5, where the CORBA error handling has been
omitted for clarity.

Table 5: A simple program using CORBA
ps.on(new CBvoid()) ;

... // wait for callback to return;

if (ps.status().getSynchronous() == 0)

ps.current().setNonBlocking(100.0);

else printf (“error in switching on\n”);

To conclude the discussion on the object model, let’s
just demonstrate how we use inheritance to model a power
supply, which has additional functionality to the simple
one that we have used in our example. Consider a power
supply, which can ramp according to a pre-loaded
ramping curve. The corresponding interface definition is
shown in table 6.

Table 6: Using inheritance with IDL
RampedPS : PowerSupply {

void loadCurve(sequence double vals,

sequence int Nsteps)

void start();

void stop();

}

The basic functionality is directly inherited from the
base power supply object.

3.2 The Application Programmer’s Interface

All the IDL objects that have been defined in the
previous section together form the application
programmer’s interface (API), because all of the objects
talks to the device server. As there are many classes, it is
considered a “wide” interface in contrast to the “narrow”
one, which is more common in control systems:
ctrlObj.remote(device,"msg",dataIn,dataOut)

where the object named ctrlObj keeps a few methods
that encapsulate all communication with the server. Here,
device represents a generic device (in C/C++ systems, it
is usually a pointer to a structure describing the device)
and the parameters dataIn and dataOut are some
generic containers that keep any type of data (in C/C++ a
pointer of type void). The string “msg” is a command that

the device server understands – unless the programmer
has mistyped it. Based on the meaning of the command
string, the device server interprets the input data from the
dataIn container and packs data into the dataOut

container.
A significant advantage of the wide interface is, that the

explicit method call on objects is safer, as many errors are
discovered at compile-time by the compiler automatically.
Table 7 shows some examples of successful error
detection, none of which would be detected in the case of
the narrow interface.

Table 7: An example of error detection in the wide
interface.
// first definitions of interfaces
interface A {

void command(typeX x) ;
}
interface B {

typeZ request(typeY y)
}
// second variable assignment
typeX x;
typeY y;
typeZ z;
// The compiler generates errors on:
A.request(y); // command does not exist
z = B.request(x); // invalid parameter type
x = B.request(y); // assigned type mismatch

It may be rightly argued that a narrow interface is
compact and generic. While the API is compact, the
programmer must learn or look up in the device manuals
all device types and their corresponding commands. In the
wide interface, the API is itself the device manual. A
simple look at the object definitions provides all insight of
device commands. By generic, it is meant that the same
application can control different device, because the user
determines the devices and commands at run-time.
However, CORBA also has a way to create command
invocations at run-time. The dynamic invocation interface
(DII) of CORBA allows to dynamically create an request
object, even when the interfaces are not known and the
interface libraries not linked to the application. The
procedure is actually very similar to the use of the narrow
interface. In addition, CORBA keeps a central repository
of interfaces, which can be queried during run-time to
discover available interfaces.

Adding it all up and considering the advantages of
object oriented concepts such as inheritance, it is clear
that the wide interface is natural for CORBA. Each device
becomes a named CORBA object. All devices are
arranged by interface type, so equal devices are grouped
through the interface. Each device interface inherits from
a basic Device, which defines basic data such as name,
position, security/access, etc.

Advanced CORBA features and services further
empower our concept of the wide interface. CORBA’s
reflection or introspection, respectively, allows run-time

discovery of interfaces and methods. It is possible and
straightforward to find all interfaces that are supported by
running device servers in the LAN. It is equally
straightforward to find first all devices of a given
interface, and then find all methods of a given device. The
clean structure of objects in the ACI makes the
interpretation easy.

We have written an application that uses all the above
mentioned features and allows the operator to invoke any
command on any device through a series of lists and
menus. This application, called Object Explorer is
completely generic through use of CORBA’s dynamic
invocation interface. Any future device that will be
modelled according to the ACI will be discovered and
controlled the moment its device server exports it to the
network.

3.3 The Communication Model

Preferably, the communication between the object and
the client program is asynchronous in order to benefit
from the advantage of distributed processes running
independently. In addition, the client’s graphical user
interface remains responsive even when a remote task
takes long to execute.

We could have used the CORBA event service, but
there is a major disadvantage to it. A CORBA event must
be generic and can not be related to a given type.
Therefore the Any type is used by CORBA to pack event
data. Such an approach would thwart our efforts to
discover all typing errors at compile time.

In order to retain strong type checking we have defined
our own callback classes for each property type. So
whenever a request is sent from the client to the object,
the clients passes a callback object as a parameter of the
requesting method. When the result of the request is
known, either a return value or just a confirmation of the
action, the object on the server side invokes a method of
the callback object. To obtain a value of type <type>, the
following callback is used:
interface CB<type> {

oneway void execute (<type> value,
Completion c);
}

The completion object is composed of a POSIX-like
time stamp and two short integers representing the
type/code of a possible error (zero stands for no errors).

Asynchronous communications provide also the means
for monitors: the client registers once with the object that
it wants to receive callbacks at regular time intervals or
when the value of a parameter changes above a threshold.
There is no need for the client to regularly poll the object
for values. Callbacks are even more efficient for alarms. A
callback is invoked only when alarm conditions occur or
disappear.
There are two types of monitors: alarms and property
monitors. Alarms are represented by the SimpleMonitor
interface. A simple monitor can only be created and later

destroyed. Property monitors, represented by the Monitor
interface, can be customised for different repetition rates
and/or to trigger callbacks whenever a value changes by a
certain amount. This amount, however, can not be defined
by the user, but is pre-set in the configuration data of the
device. It is also defined in raw binary values and not in
engineering units, as it can not be subject to non-linear
conversions.

4. CONCLUSIONS
The presented accelerator control interface (ACI) is

successfully being implemented for the control system of
ANKA [5], a 2.5 GeV synchrotron radiation light source
being built in Karlsruhe, Germany.

The interfaces for most of the devices (power supplies,
vacuum components, RF components) have been defined
and the corresponding device servers written. As it turned
out that an enumerated type would be needed only for two
cases, it was not implemented and the only two property
types used for ANKA are double and pattern.

The device servers have been implemented using C++
under Windows NT 4.0. They take data from the
LonWorks fieldbus, which is employed at ANKA.
However, the interface to the fieldbus has been kept small
so in principle the device servers could be attached to an
EPICS-based system with little effort.

On the client side, the CORBA objects are wrapped
into JavaBeans [6], which are then connected with
commercial data-manipulation and visualisation Beans
using visual tools or programmatically. As the CORBA
objects and hence the wrapper-Beans are generic models
of controlled data, they can be used at any other control
system. The Java applications are based on those objects
only and can thus be run without change on any other
accelerator, which implements servers that export ACI
devices.

5. REFERENCES
[1] For a complete description of ACI see

http://kgb.ijs.si/Clanki/ACI_draft_3.html
[2] M.Plesko, The CORBA IDL Interface for

Accelerator Control, Proc. EPAC98, Stockholm, June
1998

[3] All CORBA related information can be found on the
web pages of the Object Management Group and the
links therein: www.omg.org.

[4] A brief introduction to CORBA concepts is at
http://www.infosys.tuwien.ac.at/Research/Corba/
OMG/arch2.htm#446864

[5] M. Plesko et al, A Control System Based on Web,
Java, CORBA and Fieldbus Technologies,
PCaPAC99 workshop, Tsukuba, January 1999.

[6] G. Tkacik et al., Java Beans of Accelerator Devices
for Rapid Application Development, PCaPAC99
workshop, Tsukuba, January 1999.

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.htm#446864
http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.htm#446864
http://kgb.ijs.si/Clanki/ACI_draft_3.html
http://www.omg.org/

	TopPage
	Paper Index
	Author Index
	Movie

