RF 電子銃のビームトランスポート

山崎良雄^{A)}、平野耕一郎^{B)}、野村昌弘^{B)}、高野幹男^{B)}、武藤俊哉^{C)}、 荒木栄^{C)}、栗木雅夫^{C)}、照沼信浩^{C)}、早野仁司^{C)}、浦川順治^{C)} ^{A)}核燃料サイクル開発機構 〒311-1393 茨城県東茨城郡大洗町成田町 4002 ^{B)}放射線医学総合研究所 〒263-8555 千葉県千葉市稲毛区穴川 4-9-1 ^{C)}高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

概要

現在、RF 電子銃は、高エネルギー、高輝度の電子ビームを小型な装置で発生できることから、広く産業利用が期待されている電子ビーム源である。原子力分野のX線非破壊検査用としても、既存の装置の高性能化につながる有効な電子源装置である。本研究は、RF 電子銃に関する高性能化のための基礎的なものであり、KEK-ATF において、共同研究として進められている。本報告では、RF 電子銃から高輝度なビームを発生させ、輝度を低下させることなく、後段への輸送をするために、ソレノイド電磁石によるEmittance Compensation に関する検討を行ったものである。ビーム軌道解析コード GPT を用いた計算結果による結果もあわせて報告する。

1 はじめに

KEK-ATF で現在用いられている RF 電子銃は、間隔 2.8ns ごとの 20 バンチのマルチバンチビームを、バンチあ たり 1×10^{10} の電子加速に成功しており、実際にダンピン グリングに入射し実用化している[1]。また、フォトカソー ドに Cs₂Te を用い、長寿命で 1%以上の高量子効率を達成 している[2]。

この RF 電子銃の更なる高性能化を目指し、KEK-ATF で は、専用テストベンチを作製中である[3]。同時に、このテ ストベンチは、将来の先端医療などに適応する小型高性能 加速器を実証するためのものでもある。そこでは、電子ビ ームの詳細な計測を行うための測定系を準備し、総合的に RF 電子銃に関する基礎研究を行う予定である。

当面、テストベンチでは、現在 ATF の RF 電子銃と同様 に、空洞には BNL-IVを、カソードとしては Cs₂Te をロー ドロックシステムによって後方より導入するものを用い る。性能としては、バンチあたり InC 以上で、20 バンチの マルチバンチビームを低エミッタンスで発生し、エミッタ ンスを低下させることなく後段に輸送することを目指す。 ここでは特に、RF 電子銃のビームの質を劣化させること なく、ビームをトランスポートするためには、ソレノイド 電磁石の役割は重要である。RF 電子銃の初期位相、最大 加速電場、ソレノイドの磁場強度を調整して、rms エミッ タンスを最小にする条件を見出す。シミュレーションコー ドとしては、GPT を用いた[4]。

2 RF 電子銃のビームトランスポート

2.1 RF 電子銃からのビームエミッタンス概算

まず、RF 電子銃の横方向エミッタンスを概算する[5]。 RF 電子銃の RF 加速電場の効果によるエミッタンス ϵ_{RF} 、 空間電荷効果によるエミッタンス ϵ_{SC} 、フォトカソード固 有の熱運動と schottky 効果による初期エミッタンス ϵ_{Th} は、 以下のように表せる。

$$\epsilon_{\rm RF} = \alpha \, k^3 (\sigma_x^2 \sigma_z^2 / \sqrt{2})$$

$$\alpha = e E_0 / 2mc^2 k, \quad k = 2 \pi / \lambda$$

$$\lambda : \text{laser wave length 266nm (Nd:YAG 4 \omega)}$$

$$\varepsilon_{SC} = \pi / 4 \alpha \mathbf{k} \cdot \mathbf{I} / \mathbf{I}_{A} \cdot \sigma_{z} / (3 \sigma_{x} + 5 \sigma_{z})$$
$$\mathbf{I}_{A} = 17 [\mathbf{k}A]$$

$$\epsilon_{\text{Th}} = R/2 \cdot \sqrt{(2(h\nu - \Phi_0 + Cs\sqrt{E})/3mc^2 + 2k_BT/mc^2)}$$

R:laser spot size, $Cs = \sqrt{(e/4\pi \epsilon_0)} = 3.79 \times 10^{-5}$
 $k_BT = 2.58 \times 10^{-2} [eV](300K)$

よって、RF 電子銃の横方向エミッタンスは、上記 3 つの エミッタンスの効果を合わせると、

$$\varepsilon_x = \sqrt{(\varepsilon_{RF}^2 + \varepsilon_{SC}^2 + \varepsilon_{Th}^2)}$$
.

今、最大加速電界 E₀=150[MV/m], レーザースポットサイズ σ_x =0.34[mm], レーザーバンチ幅 σ_z = 4.26[ps]と仮定する と、 ϵ_{RF} = 0.07、 ϵ_{SC} = 5.07、 ϵ_{Th} = 0.39 π mm・mrad、とな り、空間電荷効果の寄与がほとんどで ϵ_x = 5.07 π mm・mrad となる。この値が、RF 電子銃から得られる最小のエミッ タンスということになる。このエミッタンスを劣化するこ となく後段に輸送することが課題となる。

2.2 ソレノイド電磁石

ソレノイド電磁石は、カソード表面への漏洩磁場を最小 とし、ソレノイド内の軸上磁場が極力均一なものが望まし い。製作中のソレノイドは、RF 電子銃と磁場中心とのア ライメントを補正するための調整機能を付加し、製作上、 より軸上磁場が均一になることが容易なように機械設計 を工夫した。最大中心軸上磁場が 3kGauss 程度、カソード への漏洩磁場 10Gauss 以下で、軸上の長さ 23cm のものを 作製している。設計値で、コイルは総巻数 342 ターン最大 起磁力 51300AT で、最大中心電場 3.2kGauss を発生するこ とを考えている。軸上の磁場分布を均一にし、コイルの巻 き線による不均一性を一定にするために、鉄の磁極を周期 的に巻き線と挟んだ形の構造を採用した[6]。ソレノイドの POISSON[7]磁場分布の計算結果を図1に示す。磁極付近で は、周期的な磁場の変化が存在するが、ビームが通過する 近軸上(半径<1cm)では一様分布が確立されている。軸方向 磁場成分 Bz の径方向の変化を示した計算結果を図2に示 す。Z=21[cm](カソード面が原点)はほぼソレノイドの 中心を表し、そこでは、径方向が±1cmの範囲でのBzの 変化が0.06%であることを示している。Z=10[cm]は、ソレ ノイド入り口の端面を表している。

図2:ソレノイドの磁場の均一性(I=100Aの場合)

2.3 ソレノイドによる Emittance Compensation

Serafini は、Envelope equation を用いて RF 電子銃のビー ムエミッタンスを劣化させることなく後段に輸送する条 件を見出し、ソレノイド磁場を最適化することで、 Emittnace compensation が可能であることを示している[8]。 Lawson により示された RMS envelop equation[9]は、

$$\sigma'' + \sigma'(\gamma'/\beta^2\gamma) + K_r \sigma - \kappa \sqrt{\sigma \beta^3 \gamma^3} - \varepsilon_n^2/(\sigma^3 \beta^2 \gamma^2) = 0$$

$$\sigma(z) : \text{rms transverse beam size}$$

$$\gamma' = eE_0/mc^2$$

$$K_r = -F_r/r \beta^2 \gamma mc^2$$

$$\kappa_s = I/2I_0, \quad I_0 = ec/r_e = 17kA(electron)$$

$$\varepsilon_n = \beta \gamma/2\sqrt{(-^2)} \quad .$$

右辺第3項は、外部場による収束力、4項が空間電荷効果、 5項がエミッタンスのそれぞれの効果を表している。 この Envelop equation において、1+1/2 セルの定在波型 RF 電子銃とソレノイド磁場がある場合、エミッタンスの 増大を起こさないためのビームサイズ Invariant envelope σ_1 の条件は、

$$\sigma_{I} = e(-y/2)/\sqrt{((\eta/8+b^{2})/\sin^{2}<\phi>+1/4)}$$

$$\phi = \omega t - kz + \phi_{0}$$

$$y = \ln[\gamma/\gamma_{2}]$$

$$\gamma = 1 + \gamma' z + \alpha \cos \phi$$

$$\gamma_{2} = 1 + 3\pi \alpha/2$$

$$\eta : \text{high special harmonic amplitudes of the rf wave}$$

$$b = cE_{0}/B_{0}$$

となり、Emittnace compensation が可能である。

2.4 GPT による解析

ビーム軌道解析シミュレーションコード GPT[4]を用いて、Emittnace compensation が起こる条件をサーベイした。 RF 電子銃の電場分布は SUPERFISH、ソレノイドの磁場は POISSON でそれぞれ計算し GPT へ取り込んだ。図3にRF 電子銃の電場分布、図4にソレノイドの磁場分布を示す。

図3: RF 電子銃の電場分布(Half セルの電場を高めた場合。ただし径方向の電界分布を重ねて表示した。)

図4:ソレノイドの磁場分布

(ただし径方向の磁場分布を重ねて表示した。)

今回の解析に使用した RF 電子銃の電場分布に、ハーフ セルとフルセルの電場強度のバランスを均等にしない方 法もサーベイ条件に入れた。これは、同じ RF 電力を投入 してもよりカソード表面での電界強度を強めることで、ビ ーム引き出し直後の空間電荷効果によるエミッタンス劣 化を防ぐ可能性を模索したものである。結果、ハーフセル の電界をより高めるほうが最終のエミッタンスがよくな る可能性がある。以下の結果は、この初期分布を採用して いる。ビームの初期条件は、以下のパラメータを固定した。

E₀= 150MV/m : カソード表面での最大電場 Laser spot= 0.8 mm(FWHM) Bunch length = 10 psec(FWHM)

Bunch charge = 1 nC

GPT を使用してエミッタンスが劣化しない条件を見つけ るために、最大軸上磁場強度 B₀、 RF 初期位相 ϕ_0 をパラメ ータとしてサーベイした。その結果、最良の計算結果を以 下に示す。B₀は2.4kGauss で分布は図4となった。 ϕ_0 は図 3の分布から-75°で最もエミッタンスが劣化しない条件 を得た。そのときの電子軌道の分布を図5に示す。Z=0 がカソード表面、0<Z<100 が RF 電子銃空洞、100<Z<330 にソレノイドが設置され、後は自由空間である。将来的に 後段 Z=1400 に加速管を配置する関係から、ほぼその位置 で、ビームが収束されていることも考慮した。また、シケ インを配置し、バンチコンプレスの可能性を研究する計画 も進行している[3]。ビームエネルギーは、6 MeV で、規 格化 rms エミッタンスは 10 π mm·mrad が得られた(図6)。

今回の条件は、RF 初期位相が、通常の RF 電子銃の動作 位相である 30~50°の位置から、大きく外れていることが 特徴で、バンチ幅の圧縮が観測された(図7)。このこと は、Emittnace compensation で必要となる自由空間でバンチ が広がる効果を抑えられる可能性を示唆している。

図7:バンチ幅の変化(φ₀=-75°).

3 まとめ

今回、RF電子銃ビームのEmittnace compensation に関し て検討した。Serafiniの方法を用いたInvariant envelope 条 件をGPTで解析する限り見出すことができなかった。GPT でのパラメータサーチでは、10πmm・mrad 程度のエミッ タンスを得ることができ、かつ劣化しない輸送条件を見つ けた。RF電子銃のハーフセルとフルセル間での電界強度 を変えることで、後段のビームのエミッタンスを補正しう る可能性を見出した。また、RF 位相を大幅に変えること で、バンチ圧縮する条件があること示唆した。しかしなが ら、BNL での PARMELA による解析結果や測定データと 比較して、今回のエミッタンスの結果はいずれも大きな値 となった[10]。この違いに関しては、今後検討する。

謝辞

今回の GPT の計算に関し、総研大、長谷川さん、日大 菅野さんには有益なご助言をいただきました。ここに感謝 いたします。

参考文献

- [1] 栗木、他、「Multi-bunch generation by Photo-cathode RF Gun」、本研究会.
- [2] 照沼、他、「ATF-RF 電子銃用 Cs-Te フォトカソードの 性能」、本研究会.
- [3] 平野、他、「マルチバンチフォトカソード RF 電子銃の テストベンチ」、本研究会.
- [4] S.B.van der Geer, The General Particle Tracer code, ISBN90-386-1739-9.
- [5] 栗木、"電子源"、OHO'02.
- [6] D.T.Palmer, X.J.Wang, et al., PAC97. Proc. p2843,1997.
- [7] J. H. Billen , L. M. Young , "POISSON/SUPERFISH", LA-UR-96-1834.
- [8] L.Serafini, J.B.Rosenzweig, Phys.Rev.E55, p7565, 1997.
- [9] J.D.Lawson, The Physics of Charged Particle Beams, 2nd ed. (Oxford University Press, New York, 1988)
- [10] J.C.Gallardo, H.G.Kirk, AIP Proc.No.335, p684, 1995.