LATTICE DESIGN OF THE COMPACT COOLER RING, S-LSR

白井敏之 ^{A)}、池上将弘 ^{A)}、田辺幹夫 ^{A)}、岩下芳久 ^{A)}、Hicham Fadil ^{A)}、頓宮 拓 ^{A)} 野田 章 ^{A)}、竹内 猛, ^{B)}、野田耕司 ^{B)}、渋谷真二 ^{B)}

A) 京都大学化学研究所 〒611-0011 京都府宇治市五ヶ庄

B) 独立行政法人放射線医学総合研究所 〒263-8555 千葉県千葉市稲毛区穴川 4-9-1

概要

S-LSR は電子ビーム冷却装置とレーザ冷却装置を備え、冷却技術をもちいたビーム物理と、冷却技術の R&D を目的とする小型イオン蓄積・冷却リングである。電子ビーム冷却では、陽子、炭素イオンビームの冷却をおこない、冷却可能なビームエミッタンスは 1%のエネルギー広がりで、水平・垂直方向に(281π mmmrad、 102π mmmrad)である。レーザ冷却は、ビーム結晶化の実現を目的としており、リングの構造に起因するビーム過熱を抑えるために、1周期あたりの位相進みを 127 度または 90 度以下にして運転することが可能になっている。

1 はじめに

京都大学化学研究所では、小型イオンビーム冷却リング S-LSR の建設をおこなっている[1]。S-LSR は、周長が 22.557 m、最大磁気剛性が 1 Tm で、 6 回対称形をしたコンパクトな蓄積・冷却リングである。このリングは、電子ビーム冷却装置とレーザ冷却装置を備え、「ビーム冷却」をキーワードに、それに関係したビーム物理とその応用を研究目的としている。現在、実験テーマとして、

- (i) 超高強度レーザによって加速されたイオンビーム (主 に陽子または炭素イオン) の効率的な電子ビーム冷却 方法のR&D[2]
- (ii) 結晶化イオンビーム (主にマグネシウムイオン) の 生成と応用[3]
- (iii) 超短パルスイオンビーム(主に陽子ビーム)の生成 と応用

といった課題を準備中である。これらの研究のために、 S-LSR は設計されており、本論文ではそうした中でも、ラティス構造と動作点に関連した項目を中心に述べる。

2 ラティス構造

S-LSR のラティス構造は、1 周期が、 QM 1 - BM- QM 2 - Drift Space

であり、リング全体の周期数は6である。この構造は、できるだけリングの対称性を高めながら、限られたスペースの中で、冷却装置を設置するドリフトスペースを長くとるために採用された。ドリフトスペースの長さは、1860 mmである。これは、有効冷却長500 mmの電子ビーム冷却装置の長さによって決まっている[4]。これ以外のスペースの節約のために、四重極電磁石と偏向電磁石の間のスペースは可能な限り短くし、200 mmになっている。表1にS-LSRの主要パラメータをまとめて示している。

表 1: S-LSR の主要パラメータ

並はフエンチ	
蓄積イオン種	
陽子(1価)	7 MeV
炭素(6価)	24 MeV
マグネシウム(1 価)	35 keV
リング	
周長	22.557 m
平均半径	3.590 m
ドリフトスペース長	1.86 m
周期数	6
偏向電磁石	H-type
最大磁場	0.95 T
偏向半径	1.05 m
磁極ギャップ高	70 mm
四重極電磁石	
磁極長	0.20 m
ボーア半径	70 mm
最大磁場勾配	5 T/m

図1 S-LSR のリングレイアウト

図1は、S-LSRのリングレイアウトを示している。一番右側のドリフトスペースには、静電型入射・出射セプタムが設置されている。その両横のドリフトスペースは、入出射点からのベータトロン位相進みが約90度であるので、バンプ電磁石、キッカー電磁石が設置されている。また、同じドリフトスペースに、DC-CTなどのビームモニタも設置されている。それ以外の3つのドリフトスペースは、それぞれ、電子ビーム冷却装置、レーザ冷却装置、高周波・誘導加速装置が設置されている。

3 動作点とラティスパラメータ

3.1 電子ビーム冷却

陽子、炭素イオンビームの電子ビーム冷却を効率よくおこなうためには、電子ビーム冷却装置が設置されたドリフトスペースにおいて、

- (i) ツイスパラメータが左右対称で、変化が小さい
- (ii) β関数と分散関数が小さい

ことが望ましい。これらの条件をできるだけ満たすために、チューンが(v_x , v_y)=(1.875, 0.793)を動作点の候補として考えている(ノーマルモード)。図 2 には 6 次までの共鳴線とこの動作点(丸印)が示されている。もっとも近い 4 次以下の共鳴線は、 v_y =0.75のラインである。差共鳴による結合を避けるために、水平・鉛直チューンの差を 0.08 にとっている。このときの 1 周期内での β 関数と分散関数の分布を図 3 に、表 2 には MAD8を用いて計算した主要なラティスパラメータを挙げる[5]。

電子ビーム冷却の場合には、陽子ビームのマルチターン入射や、レーザによって加速されたホットビームの冷却をおこなうために、アクセプタンスが重要となる。真空チェンバーサイズと電磁石の有効磁場範囲によって決まる幾何学的アパーチャーは、水平±200 mm、鉛直±22.5 mmである。これには、真空チェンバーのアライメント誤差や、大気圧によるチェンバーのたわみも含まれている。

様々な誤差要因に対する個別のCODの大きさを評価した結果が表3である。ここでは各電磁石のもつ誤差が完全にランダムに分布していると仮定して計算している。これから、偏向電磁石のBL積の個体差が大きな影響を与えることがわかるが、S-LSRでは、6台の偏向電磁石のヨークを同時に加工する方法を採用したため、このばらつきを2x10⁴以下にできると考えている[6]。また、電子ビーム冷却装置のトロイドコイルによるCODは、7MeVの陽子ビームに対するものであり、これは構造上避けられないものである。そのため、磁場の影響をキャンセルするための専用補正水平ステアリング電磁石をすぐ側に設置している。

図4は各誤差が、表3で与えた値を 1σとするガウス分布すると仮定して、乱数で値を与えて計算したCODの一例である。COD補正計算は、6台の偏向電磁石の補正電流と各ドリフトスペースに1台ずつ計6台設置された垂直ステアリング電磁石をもちいておこなった。具体的には、COD を12台の四重極電磁石真空チェンバー内部に設置された静電型ビームモニタの位置で検出し、それらの値を最小二乗法によって最小化するように軌道補正をおこない、それを3回繰り返した。

この結果から補正しなければ、水平方向 3 mm、鉛直方向 1 mm の COD が発生している。この値は表 3 の個別の COD の和より大きくなっているが、これは、通常の COD とトロイドによる COD が結合しているためと思われる。また、補正をすることにより、それらがトロイド部分を除いて、1/1 0以下まで小さくなくことがわかる。これらの計算から、エネルギー広がり±1%のビームの最大アクセプタンスは、(2300 π mm mrad, 102 π mm mrad) になる。電子ビーム冷却では、イオンビームのサイズを直径 50 mm である電子ビームサイズ以下にする必要があるので、冷却可能な最大エミッタンスは、(281 π mm mrad, 102 π mm mrad) になる。

図3 ノーマルモードでの、1 周期内での β 関数と 分散関数の分布

表2 ノーマルモードでの、ラティスパラメータ

• • • • • • • • • • • • • • • • • • • •	
ベータトロン振動数	(1.875, 0.793)
磁場勾配 QM1, QM2	-0.59 m ⁻²
Natural Chromaticity	(-0.93, 0.38)
最大β関数	(3.68 m, 4.67 m)
ドリフト中央でのβ関数	(1.23 m, 4.46 m)
最大水平分散	1.37 m
Transition γ	1.63
Momentum Compaction	0.378

表3 ノーマルモードでのCOD計算値

誤差要因		COD (mm)
偏向電磁石		
BL積個体差	2 x 10 ⁻⁴	1.39 (H)
水平方向位置	0.1 mm	0.52 (H)
進行方向位置	0.1 mm	0.34 (H)
水平方向回転	0.1 mrad	0.31 (V)
鉛直方向回転	0.2 mrad	0.66 (H)
進行方向回転	0.1 mrad	0.52 (V)
四重極電磁石		
水平、鉛直方向位置	0.1 mm	0.12 (H,V)
水平方向回転	0.1 mrad	0.01 (V)
鉛直方向回転	0.2 mrad	0.02 (H)
電子ビーム冷却装置	•	
トロイドコイル		2.8 (H)

3.2 レーザ冷却

レーザ冷却の場合には、イオン源から引き出した 35 keV の Mg^+ ビームを直接リングに入射、蓄積をおこなう。この場合に重要な点は、ビームを冷却するときに、共鳴によってビームが過熱されないことであり、

- (i) 1周期あたりの位相進みが 127 度または 90 度以下であること[7][8]。
- (ii) 非線形共鳴を誘起しないよう、磁場の非線形成分が 小さいこと。
- (iii) CODが小さいこと。

という条件が求められる。 1番目の条件をみたすために、動作点は、表4に挙げている 2点が想定されている(クリスタルモード)。 それぞれ、ビーム結晶化が起きるかどうかの閾値と考えられているベータトロン位相進みが 90 度、127 度という条件を満たす動作点である。 クリスタルモード 1 のときの、 1 周期内での β 関数と分散関数の分布を図5に示す。

3番目の条件は、イオンビームと冷却用レーザビームを正確にオーバーラップさせるためにも重要である。クリスタルモード1で、前節と同様な手法をもちいて、COD補正をおこなった結果を図6に示す。1 mm 程度あったCODが、静電位置モニタの設置・測定誤差によって決まる限界の0.2 mm 程度にまで抑えられることがわかる。

4 まとめ

電子ビーム冷却とレーザ冷却の2つの冷却方法とそれぞれの実験テーマに合わせて、S-LSRのラティス設計および最適な動作点のパラメータ検討をおこなった。これにより線形オプティクスに関しては実験の要求を満たす設計ができたと考えている。

5 謝辞

本研究を進めるにあたっては、MPI Heidelberg の Grieser 博士、JINR Dubna の Syresin 博士、広島大学の岡本氏、百合氏、岡部氏には有益な議論とアドバイスをいただきました。ここに感謝いたします。また、本研究は先進小型加速器事業の一環としておこなわれました。

参考文献

- [1] A. Noda et al., Proc. of Symposium on Accel. Sci. and Tech. (2001) 125.
- [2] J.P. Schiffer and P. Kienle, Z. Phys. A321, 181 (1985).
- [3] H. Fadil et al., Proc. of European Particle Accel. Conf., (2002) 1341.
- [4] H. Fadil et al., in this proceedings.
- [5] H. Grote, MAD Program, CERN/SL/90-13.
- [6] M. Ikegami et al., in this proceedings.
- [7] J. Wei, X.-P. Li, A. M. Sessler, Phys. Rev. Lett. 73 (1994)
- [8] H. Okamoto et al., Proc. of European Particle Accel. Conf., (2002) 1389.

図4 ノーマルモードでのCOD計算結果。左図は補 正前、右図は補正後。 誤差量は表3で与えられて いるとおりである。

表4 クリスタルモードでのラティスパラメータ

ベータトロン振動数 (1.448, 1.438) (2.080, 1.070) 1 周期の位相進み (86.9, 86.3 deg) (125, 64.2 deg) 磁場勾配 OM1		モード1	モード2
	ータトロン振動数	(1.448, 1.438)	(2.080, 1.070)
磁場勾配 OM1 -1 586 m ⁻² 1 423 m ⁻²			(125, 64.2 deg)
-1.500 m	場勾配 QM1	-1.586 m ⁻²	1.423 m ⁻²
磁場勾配 QM2 -1.586 m ⁻² -2.554 m ⁻²	場勾配 QM2	-1.586 m ⁻²	-2.554 m ⁻²
Natural Chromaticity (-0.10, 1.26) (-1.21 -0.18)	atural Chromaticity	(-0.10, 1.26)	(-1.21 -0.18)
最大β関数 (4.3 m, 2.7 m) (4.2 m, 5.3 m)	大β関数	(4.3 m, 2.7 m)	(4.2 m, 5.3 m)
最大水平分散 2.42 m 1.32 m	大水平分散	2.42 m	1.32 m
Transition γ 1.23 1.76	ansition γ	1.23	1.76

図5 クリスタルモード1での、1周期内での β 関数 と分散関数の分布

図6 クリスタルモード1でのCOD計算結果。左図 は補正前、右図は補正後。誤差量は表3と同じだが トロイドは励磁されていない。