J-PARC 3GeV シンクロトロン用荷電変換フォイル温度分布計算

倉持勝也^{A)}、金正倫計^{A)}、入江吉郎^{B)}、菅井勲^{B)}、五十嵐進^{B)}、 荒木田是夫^{B)}、武田泰弘^{B)}

 A)日本原子力研究所 東海研究所 大強度陽子加速器施設開発センター 〒319-1195 茨城県那珂郡東海村白方白根 2-4

^{B)} 高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

はじめに

大強度陽子加速器施設(J-PARC) 3 GeV シンクロトロン (3 GeV-RCS) では、3 種類の荷電変換フォイルを使用する. 1 つは、リニアックで加速された Hビームを H⁺に荷電変 換し、3 GeV-RCS へ入射するためのフォイル (ファースト フォイル)、ファーストフォイルで H⁺ではなく H⁰に変換 されたビームを H⁺ビームに変換するフォイル (セカンドフ ォイル)、及びファーストフォイルで変換されずに Hのま ま残ったものを H⁺ビームに変換するフォイル (サードフォ イル)である. セカンドフォイル及びサードフォイルで H⁺ に変換されたビームは下流にある H⁰ ビームダンプに導か れる[1].

これらのフォイルは用途の違いにより必要とされ る膜厚や材質にも違いがある.それぞれのフォイル の温度上昇(温度分布)を解析計算にて知ることに より,荷電変換フォイルシステムを構築するための 材料,膜厚,及びフォイルの寿命の参考とする.今回 はファーストフォイル,及びサードフォイルについて 検討を行った.算出には計算コードANSYSを使用し, 入力条件として,ACCSIMの出力を利用した.

1 解析モデル

1.1 モデル

フォイルの温度計算に使用したモデルを表1に示す. メッシュサイズは ACCSIM[2][3]での粒子分布データを 計算コード ANSYS[4]の入力データとしているため, ACCSIM のメッシュサイズに合わせている.

	形状	メッシュ分割
	(横*縦*厚さ)	(横*縦)
モデル1	26mm * 12.8mm * 1.5 μm	65 * 32
モデル2	36mm * 32mm * 1.5 μm	50 * 50

表1:計算モデル

1.2 物性值

ファーストフォイルは荷電変換後のビームの質が重要 となるため、また、周回ビームが何度もフォイルを通過す るために、密度が小さく昇華温度の高い炭素をフォイル材 料として利用する.実際使用される炭素フォイルは真空蒸 着等で製作されるため、正確な物性値が明らかでないので、 今回はダイヤモンド、及びグラファイトの2種類で計算を 行った.

本計算に使用したファースト及びサードフォイルの材 料物性値を表2及び表3にそれぞれ示す.

表 2 : 物性値表 1 [5][6]				
	ダイヤモンド		グラファイト	
密度 g/cm ³	3.51		2.25	
比熱 J/g・K	298K	0.51	373K	0.75
	500K	1.13	700K	1.48
	800K	1.63	1255K	1.87
	1100K	1.88	3550K	4.61
熱伝導率 W/m・K	100K	5450	300K	129
	400K	936	500K	106
			3000K	31
輻射率	0.2,及び0.8		0.2,及び0.8	
表3:物性值表2				
			/	

	アルミニウム 銅		嗣	
密度 g/cm ³	2.70		8.93	
比熱 J/g・K	9.17		3.85	
熱伝導率 W/m・K	100K	240	100K	395
	300K	233	300K	381
	700K	92	700K	354
輻射率	0	.2	0	.2

1.3 解析条件

今回の計算に使用した条件を以下に示す

全ての計算において、フォイルの初期温度、及び輻射の 参照温度は 293K である. 輻射の参照温度とは、面間で受 け取られなかった輻射エネルギーを吸収するための温度 である.

(1) 入熱時間条件

図1に入射ビームのパターンを示す.入熱時間条件 は.この入射パターンを使用した.

図1:入射ビームのパターン形状

(2) ファーストフォイル

ファーストフォイルは表1に示した両計算モデル で計算を行った.モデル1では、図2に示す ACCSIM の粒子分布データを入力値とし、ダイヤモンド、及び グラファイトの両方で輻射率0.2 と0.8 の2種類でそ れぞれのフォイルの温度分布を計算した.フォイルの 輻射率に関しては、明らかなデータがないので,輻射 率の高低で温度上昇や分布の違いを評価をするため に、0.2 と0.8 の値を使用した.また入射バンプ立ち下 り時間50 µsec、100 µsec、及び200 µsec の3種類につ いてモデル2によりフォイルの温度分布を計算した.

ファーストフォイルの入熱条件として, 陽子がフォ イルを通過した際のエネルギーロス (energy deposition)の値を用いた.400MeVの陽子1個が 1.5 µmの炭素フォイルを通過する際のエネルギー ロス は 819eV である[7].

(3) サードフォイル

サードフォイルはモデル2で計算を行った.フォイ ルの材質としてアルミニウム,及び銅の2種類を使用 し,輻射率は 0.2 とした.入熱条件はファーストフォ イルの破損による入射 Hrのフルビームの通過,及び 入射バンプ磁場のミストリガによる入射 Hビームの 10%通過の2種類を想定し計算を行った.フォイルの 膜厚は 10 µm, 50 µm,及び 100 µm の3種類について 検討した.

サードフォイルの入熱条件もファーストフォイル 同様,陽子のエネルギーロスとした.10 µm の銅のフ オイルを通過する 400MeV の陽子のエネルギー ロスは 18650eV であり,10 µm のアルミニウムでは 6490eV である.

図 2: ACCSIM 粒子分布(モデル1) 粒子数:10000 個, x 軸:フォイル位置 y 軸:フォイル位置, z 軸:粒子の数

2 温度分布計算結果評価

2.1 ファーストフォイル

代表的な温度分布図,及び最高温度推移グラフを図 3, 及び図4に示し,全計算ケースの計算結果を 表4,及び表 5に示す.

今回の計算結果からフォイル先端部に高温部が集中す ることがわかった.これがフォイル周辺部が内側にカール する等の熱変形の原因であると考えられる.

図3:モデル1によるファーストフォイルの 温度分布及び最高温度推移グラフ

(1) ビーム通過直後の温度分布 材質: グラファイト, 輻射率: 0.2

(2) 最高温度推移(K)

材質:グラファイト,輻射率:0.2 図4:モデル2によるファーストフォイルの 温度分布及び最高温度推移グラフ

表4:モテル1計算結果			
	Point 1	Point 2	
ケース名	最高温度 (K)	最高温度 (K)	
グラファイト 輻射率:0.2	998.15	865.02	
:0.8	748.37	593.63	
ダイヤモンド 輻射率:0.2	930.23	850.47	
:0.8	696.20	598.45	

表5:モデル2計算結果

ケース名	Point 1	Point 2	
	最高温度 (K)	最高温度 (K)	
$T_b=50 \ \mu sec, \ \epsilon_g=0.2$	1069.0	914.0	
$T_b = 100 \ \mu sec, \ \epsilon_g = 0.2$	1079.7	917.73	
$T_b = 100 \ \mu sec, \ \epsilon_g = 0.8$	811.87	627.13	
$T_b = 200 \ \mu sec, \ \epsilon_g = 0.2$	1541.2	1137.9	
$T_b = 200 \ \mu sec$, $\epsilon_g = 0.8$	1225.5	753.0	
$T_b = 100 \ \mu sec, \ \epsilon_d = 0.2$	1014.2	916.13	
$T_b = 100 \ \mu sec$, $\epsilon_d = 0.8$	756.49	638.77	
$T_b = 200 \ \mu sec, \ \epsilon_d = 0.2$	1448.6	1176.1	
$T_b = 200 \ \mu sec, \ \epsilon_d = 0.8$	1089.8	799.72	

 T_b :バンプ磁場の立下り時間, ϵ_g :グラファイトの輻射率 ϵ_d :ダイヤモンドの輻射率

入射バンプの磁場立下り時間 200 µsec と 100 µsec でのフ オイル温度を比較すると, 200 µsec の場合, 100 µsec の場合 の約 1.5 倍の温度上昇が見られる.一方,入射バンプ磁場 の立下り時間が, 100 µsec と 50 µsec の場合を比較すると, フォイルの温度上昇には大差が見られない.3 種類の入射 バンプ磁場立下り時間において,フォイルを通過する粒子 数がそれぞれ約 200000 個でほぼ同数であるが, 200 µsec 時 では通過する粒子がフォイル先端部に集中していること が原因で,最高温度に大きな差が生じたと考えられる. このことから,バンプ磁場が 100 µsec 程度で経ち下がれば, 周回ビームへの磁場影響が小さく,フォイルの温度上昇を 抑制することが可能である.以上のことより,入射バンプ 磁場の立下り時間は 100 µsec 以下が必要である.

2.2 サードフォイル

サードフォイルで変換される陽子量は、ファーストフォ イルが正常に機能している限り、0.1 ワット以下である.し かし、このフォイルが破損した場合には、全 Hビームがサ ードフォイルを通過することになる.また、もし4 台のペ イントバンプ電磁石励磁のタイミングが何らかの故障で 同期しなかった場合、1 ターン後のビームがサードフォイ ルを直撃することがある.これらのことを考慮して、フル ビーム及び、フルビームの10%がフォイルを通過した場合 のフォイルの温度上昇を計算した.180MeV フルビーム 1 ショット通過時の最高温度推移グラフを図5に、各条件で のビーム1ショット通過時の最高温度を表6に示す.今回 の入熱条件では、単位体積当たりの入熱量が同じとなるの で、膜厚によらず温度上昇も同じになる.

フルビーム1ショット通過時には、銅、及びアルミニウ ム両方で高温になることがわかり、フォイルの破損が心配 される結果となった.以上のことから、事故時を想定し、 サードフォイルも簡便に交換可能なシステムが必要であ ると考えられる.

表6:サードフォイル温度分布計算結果				
エネルギー	物質	膜厚	膜厚	膜厚
通過ビーム		10 µm	50 µm	100 µm
180MeV, 10%	Al	349.394	349.394	349.394
180MeV, full	Al	850.722	850.786	850.794
400MeV, 10%	Al	328.757	328.757	328.757
400MeV, full	Al	646.572	646.595	646.598
180MeV, 10%	Cu	408.655	408.655	408.655
180MeV, full	Cu	1435.0	1436.0	1436.0
400MeV, 10%	Cu	367.16	367.16	367.16
400MeV, full	Cu	1026.0	1026.0	1026.0

3 結言

大強度陽子加速器施設 3 GeV-RCS で使用するフォイル の温度分布計算を行った.計算の結果,入射バンプ磁場の 立下り時間が 200 µsec と 100 µsec では,約 1.5 倍の温度上 昇があり,100 µsec と 50 µsec では大差がないことがわかっ た.ファーストフォイルの温度は入射バンプ磁場の立下り 時間に依存する.計算の結果,バンプ磁場の立下り時間を 100 µsec で設計を進める方針である.

サードフォイルについては銅, アルミ両材料においてフ ルビーム通過時に, 短期間でフォイルが破損する場合が考 えられる.よって, フォイル交換機能を取り入れることと した.また, 膜厚は機械的強度で決める必要があるので今 後, 構造解析計算を行う予定である.

参考文献

- [1] JAERI-Tech 2003-044 p 101
- [2] J F Janni : Technical Report No. AFWL-TR-65-150
- [3] F W Jones, Accsim Reference Guide, Version 3.5, June 1999, TRIUMF
- [4] ANSYS 伝熱解析セミナーノート
- [5] 無機化学全書 X-2 丸善 昭和 51 年
- [6] 薄膜ハンドブック 日本学術振興会, 薄膜第 131 委員会 編, オーム社, 1983 年
- [7] JF janni, AFWL-TR-65-150