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Abstract

The evolution of the field of an FEL oscillator at zero de-
tuning length of an optical cavity (δL = 0) is studied analyt-
ically. The field on the leading edge at the first round trip is
the same as that of a self-amplified spontaneous emission
(SASE) FEL characterized by an FEL parameter ρ. The
field evolves with round trips by interaction with electrons.
The field in the early stage of the evolution is found to scale
with the FEL parameter ρ and the round-trip number, and
is similar to that of SASE with high electron beam density.

INTRODUCTION

An experiment in the Japan Atomic Energy Research In-
stitute (JAERI) has shown that an efficiency of an FEL os-
cillator can become maximum at the zero detuning length
of an optical cavity (δL = 0) despite the lethargy effect
[1]. The sharp increase of an efficiency near zero detuning
length has been also observed in BINP or KAERI, recently
[2]. A time dependent simulation including shot-noise ef-
fects has successfully reproduced the efficiency detuning
curve obtained in the experiment in JAERI-FEL [3], but
the physics responsible for the FEL at δL = 0 has not been
clearly proposed yet. A few theoretical studies have fol-
lowed the experiment and attributed the sideband instabil-
ity [4] or the superradiance in short-pulse FELs [5] to the
lasing at δL = 0. However, those studies are still based on
numerical simulations.

The main difference of FELs between δL = 0 and
δL < 0 is whether incident electrons interact with the field
characterized by the steep intensity gradient on the lead-
ing edge similar to SASE [6]. At δL < 0, an optical field
is pushed forward with round trips, and electrons interact
with a field much stronger than that on the leading edge at
δL = 0. An analysis of the interaction between the field
similar to SASE and electrons has been performed recently
[7]. The analysis shows that intense few-cycle FELs are
generated as a result of intensive energy transfer from elec-
trons to the field at the peak at δL = 0. The present study
focuses on the early stage of the field evolution at δL = 0,
and shows that the field scales with the FEL parameter ρ
[8] and the round-trip number n during the evolution.

BASIC EQUATIONS

The present study is performed under the slowly vary-
ing envelope approximation (SVEA) [9]. The initial elec-
tron energy γ0mc2 is assumed to be resonant for radiation
wavelength λ = λw(1 + a2

w)/(2γ2
0), where λw = 2π/kw
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and aw are undulator period and parameter respectively. In
order to deal with few-cycle fields, I choose unity for the
number of undulator periods, through which electrons pass
in a scaled time, instead of 1/(4πρ) [8] or the total num-
ber of undulator periods Nw [10]. The fundamental FEL
parameter ρ [8] is defined by

ρ = [eawF
√

ne/(ε0m)/(4ckw)]2/3/γ0 (1)

in MKSA units, where ne is the electron beam density and
F is unity for a helical undulator or Bessel function [JJ ]
for that of planar type [8]. I define dimensionless time by
τ = ct/λw, dimensionless optical field by

a(ζ, τ) =
2πeawλwF

γ0
2mc2

E(ζ, τ) exp[iφ(ζ, τ)] (2)

with phase φ(ζ, τ), and dimensionless beam current by
[4πρ(ζ, τ)]3 as similar to Ref. [10]. Here E(ζ, τ) is the
rms optical field strength. The longitudinal position, di-
mensionless energy and phase of the i-th electron are re-
spectively defined by ζi(τ) = [zi(t) − ct]/λ, µi(τ) =
4π[γi(t) − γ0]/γ0 and ψi(τ) = (kw + k)zi(t) − ωt. In
the present definition, the electron dynamics is represented
by the following pendulum equations [10]:

dµi(τ)
dτ

= 2|a[ζi(τ), τ ]| cos{ψi(τ) + φ[ζi(τ), τ ]}, (3)

dψi(τ)/dτ = µi(τ). (4)

The evolutions of FEL phase and amplitude are given by
[10]

∂φ(ζ, τ)/∂τ = [4πρ(ζ, τ)]3/|a(ζ, τ)|×
〈sin{ψi(τ) + φ[ζi(τ), τ ]}〉ζi=ζ , (5)

|a(ζ, τ)|/∂τ = −[4πρ(ζ, τ)]3×
〈cos{ψi(τ) + φ[ζi(τ), τ ]}〉ζi=ζ . (6)

The angular bracket shows an average over electrons
around ζ within λ along the propagating direction [9].

FIELD AT THE 1ST ROUND TRIP

A field with uniform phase over length of Nλ is formed
from an initial incoherent field after passage of electrons
through N undulator periods [11]. This formation cor-
responds to the spectrum narrowing in the frequency do-
main [6, 12], and directly leads to a backward coherent
state. The average of the coherent field at time τ is ap-
proximately given by the solution of the cubic equation
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for an input weak field with uniform amplitude and phase
a(0) = |a(0)|eiφ(0) [10]:

a(ζ, τ) = [a(0)/3][exp(4πρτei π
6 ) + exp(4πρτei 5π

6 )
+exp(4πρτe−i π

2 )]. (7)

The coherent field is ranged at ζ < −τ , and corresponds
to the steady state regime described in Ref. [8]. Since the
evolution of the field at ζ = −τ stops at time τ due to the
slippage of electrons, the field at ζ ≥ −τ is given by

a(ζ) = [a(0)/3][exp(−4πρζei π
6 ) + exp(−4πρζei 5π

6 )
+exp(−4πρζe−i π

2 )]. (8)

This field corresponds to the leading edge described in Ref.
[8]. In the high gain regime defined by −ρζ > 0.1 or
2(−4πρζ)3 > 4, the field on the leading edge is approx-
imately given by

a(ζ) = [a(0)/3][exp(−4πρζei π
6 ). (9)

The phase of a(ζ) is given by

φ(ζ) = φ(0) − 2πρζ. (10)

FIELD AT THE NTH ROUND TRIP IN
THE EARLY STAGE OF THE EVOLUTION

The output field at the first round trip in an oscillator is
identical to that of SASE given by Eq. (9), and becomes
an input field for the 2nd round trip. The head of a round-
trip FEL coincides with that of an incident electron pulse
at the entrance to an undulator at δL = 0. Therefore a
study of the interaction with the field given by Eq. (9) and
electrons is indispensable to understand the FEL evolution
at δL = 0.

Figure 1 shows a semi-log plot of an FEL amplitude at
saturation as a function of longitudinal position in units of
resonant wavelength λ. This is obtained in a time depen-
dent simulation. The right hand side shows the front edge
of the FEL field. The zero is the position of the head of
incident electrons at the entrance to an undulator. The po-
sition of the principal peak of the field is represented as
ζp. The region from 0 to ζp is the leading edge. The inset
shows the linear plot of the amplitude.

I assume that the output field on the leading edge at the
round-trip number n is the same as that of SASE with FEL
parameter ρn. The assumption is exact at the 1st round
trip of an oscillator where ρ1 = ρ. The validity of the
assumption for the subsequent round trip will be confirmed
later. Under the assumption, the field on the leading edge
is given by

an(ζ) = [an(0)/3] exp[−4πρnζeiπ/6]. (11)

The phase of the ith electron remains almost unchanged
during the interaction with the field given by Eq. (11):
ψi(τ) ≈ ψi(0). This is because the field on the lead-
ing edge is weak as shown in Fig. 1 and the synchrotron
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Figure 1: Semi-log plot of an FEL amplitude |a| at δL = 0
after saturation with respect to the longitudinal position ζ
(solid line) together with an electron pulse at the entrance
to an undulator. The positions of the front edge and the
principal peak are 0 and ζp, respectively. The inset is a
linear plot of |a|.

oscillation of electrons occur at ζp. The energy modu-
lation given to the ith electron at τ ′ is represented by
∆µi(τ ′) = 2|an[ζi(τ ′)]| cos{ψi(0)+φn[ζi(τ ′)]}∆τ ′ from
Eq. (3). The phase modulation at τ due to ∆µi(τ ′) is given
by ∆µi(τ ′)(τ − τ ′) from Eq. (4). The phase of the ith
electron is derived from the sum of those phase modula-
tions during τ :

ψi(τ) = ψi(0) + 2|an[ζi(0)]|
∫ τ

0

e2π
√

3ρτ ′ ×
cos{ψi(0) + φn[ζi(τ ′)]}(τ − τ ′)dτ ′.(12)

Equation (12) can be used when the gain of the field is
low and the field remains almost unchanged during pass
through an undulator. Substitution of Eq. (11) into Eq.
(12) yields

ψi(τ) = ψi(0) + {|an[ζi(τ)]|/(8π2ρ2)}×(
cos{ψi(0) + φn[ζi(τ)] − π/3}

−e−2π
√

3ρτ cos{ψi(0) + φn[ζi(0)] − π/3}
−4πρτe−2π

√
3ρτ cos{ψi(0) + φn[ζi(0)] − π/6}

)
. (13)

The phase shift and gain of a(ζ, τ) due to an elec-
tron micro-bunch in units of λ, whose initial positions are
around ζ + τ , are obtained by substituting Eq. (13) into
Eqs. (5) and (6) respectively as follows:

∂φn(ζ, τ)/∂τ = 4π(ρ3/ρ2
n) ×

{1/2 − e−2π
√

3ρnτ [cos(2πρnτ + π/3) +
4πρnτ cos(2πρnτ + π/6)]}, (14)

[∂|an(ζ, τ)|/∂τ ]/|an(ζ, τ)| = 4π(ρ3/ρ2
n) ×

{
√

3/2 − e−2π
√

3ρnτ [sin(2πρnτ + π/3) +
4πρnτ sin(2πρnτ + π/6)]}, (15)

when |an(ζ)|/(8π2ρn
2) � 1 is satisfied or synchrotron

oscillation does not occur.
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The field gain per round trip due to electrons
[∂an(ζ)/∂n]/an(ζ) = [∂|an(ζ)|/∂n]/|an(ζ)| +
i[∂φn(ζ)/∂n] is derived from integrations of Eqs.
(14) and (15) from 0 to −ζ as follows:

[∂an(ζ)/∂n]/an(ζ) = (ρ/ρn)3[−4πρnζeiπ/6×
(1 + e4πρnζeiπ/6

) − 2(1 − e4πρnζeiπ/6
)]. (16)

Equation (16) is asymptotically equal to

[∂an(ζ)/∂n]/an(ζ) = (ρ/ρn)3(−4πρnζeiπ/6−2), (17)

for ρnζ < −0.2. The differentiation of Eq. (11) by n gives
the field evolution per round trip:

[∂an(ζ)/∂n]/an(ζ) = −4πeiπ/6(∂ρn/∂n)ζ. (18)

When the gain from electrons represented by Eq. (17) is
much higher than α/2, the gain is equal to the field evolu-
tion given by Eq. (18). This leads to the evolution of ρn as
a function of n:

ρn ≈ ρ(3n − 2)1/3. (19)

Equation (19) confirms the assumption that the field on the
leading edge at the round-trip number n is the same as that
of SASE with FEL parameter ρn. As the slope of the am-
plitude increases with ρn, the peak intensity on the leading
edge increases and the pulse length becomes short.

COMPARISON WITH A CALCULATION

The gain of the field at the 2nd round trip is given by
(−4πρζeiπ/6 − 2) from Eq. (17) together with ρ1 = ρ.
The amplitude gain and phase shift amount to 0.5 and 1.4,
respectively, for −ρζ = 0.23 or 2(−4πρζ)3 = 50. In the
case of an oscillator with higher gain, the gain and phase
shift become grater than the above values. It is therefore
unclear whether the above gain and phase shift are consis-
tent with the assumption used for derivation of Eq. (12) that
the field remains unchanged during the evolution. The con-
sistency will be confirmed, if Eq. (19) agrees well with ρn

obtained from a time dependent calculation using Eqs. (3),
(4), (5) and (6). The calculation for an input field given by
Eq. (9) with ρ = 0.0044 is performed under an assumption
that an optical cavity loss is 0 and the amplitude |a(0)|at
ζ = 0 is constant. The parameter ρn at ζ is obtained from
the slope of the amplitude or phase of the calculated field
at the round-trip number n. The ratios of ρn to ρ obtained
from those slopes at ζ = −0.23 with respect to n are shown
in Fig. 2. They agree well with Eq. (19). The calculations
with input fields with different ρs show also similar results.

CONCLUSION

The field on the leading edge at the 1st round trip is iden-
tical with SASE and is given by the exponentially increas-
ing term of the solution of the cubic equation. The FEL
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Figure 2: The ratio of ρn to ρ as a function of the round-
trip number n. The solid line shows Eq. (19). The dashed
line and dash-dotted line are derived from the slopes of the
amplitude and phase of the calculated field, respectively.

interaction between the field similar to SASE and elec-
trons can be analyzed under an assumption that the field re-
mains almost unchanged during the evolution. The analysis
shows that the field on the leading edge scales with the FEL
parameter ρ and the round-trip number n when the gain is
much smaller than an optical cavity loss. The validity of the
assumption that the field remains almost unchanged during
pass through an undulator is also confirmed.
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