化学研究所附属原子核科学研究施設の加速器施設

野田 章、岩下芳久、白井敏之、頓宮 拓

京都大学化学研究所附属原子核科学研究施設 〒611-0011 京都府宇治市五ヶ庄

概要

京都大学化学研究所附属原子核科学研究施設では昭和 63年の蹴上から宇治キャンパスへの施設の移転に際し て図1に示した7MeVの陽子線形加速器を設置して以後も、 これに加えて100MeV電子線形加速器及び電子蓄積リング KSRを設置・稼働させてきた(図2)。こうした加速器 施設は、加速器物理学・ビーム物理学の開発研究を主たる 目的として研究・教育に活用されてきているが、後でも述 べるように結晶からのパラメトリックX放射や素粒子実 験のための検出器の較正といったビーム利用の上でも活 用されてきている。

ここではこれらの加速器施設を紹介し、現在建設中の S-LSR も含めた将来の展望についても触れる。

1 陽子線形加速器

陽子線形加速器は蹴上時代から中間子科学総合研究センター計画の一環として、大強度陽子加速器の初段部分の加速器開発としての位置づけのもとに開発に着手し、いち早く433MHzという従来の陽子線形加速器で標準的に使用されていた 200MHz に比して、高周波を採用する

ことにより加速器の小型化を 追求する方向性を打ち出し た。これはKEKと原研により現在建設が精力的に推進さ れている J-PARC線形加速器の初段部分へと発展していく のにつながったと自負している。陽子線形加速器の構成は 表1に示したようにマルチカスプタイプの50keVイオン源 及び高周波四重極型(RFQ:2MeV)及びアルバレ型 (Alvarez::7MeV)からなる定在波型の加速空胴とこれらを つなぐビーム輸送系からなっており、最終段アルバレ型空 胴の直後で縦・横両方向のビームエミッタンスの測定が可 能な設計となっている[1,2]。この陽子線形加速器は今後, 後述するイオン蓄積・冷却リング、S-LSRの入射器として も活用する予定である。

表1:陽子線形加速器の主要パラメータ

加速粒子		H^{+}
イオン源	マルチオ	1スプタイプ
入射エネルギー		50 keV
加速エネルギー	RFQ	2 MeV
	Alvarez	7 MeV
ビームパルス幅		50µsec
最大繰り返し		180 Hz
高周波周波数		433 MHz

図1 京都大学化学研究所陽子線形加速器のレイアウト

2 電子線形加速器

電子線形加速器は熱電子銃及び周波数 2857MHz (S-band)の定在波型のプリバンチャー及び進行波型のバン チャー及び3台の加速管から構成されている。7 万ボルト の直流高圧でDC的に引き出された電子ビームはプリバ ンチャー及びバンチャーにより、バンチングされ、3台の 後段の主加速管により 100MeVまで加速される。電子ビー ムのパルス幅はガンパルサーの交換により 10ns から1µs まで変更可能となっている。表2に電子線形加速器の主要 パラメータを示した[3]。

この電子線形加速器からのビームはこれまでにシリコン結晶からのパラメトリックX線放射の実験[4]及びガスチェレンコフカウンター等の較正[5]に活用されている。

表2 電子線形加速器の主要パラメータ

加速粒子	電子	
入射エネルギー	70 keV	
電子エネルギー	100 MeV	
電子銃	熱電子銃	
加速管タイプ	Disc-Loaded	
ビームパルス幅	10ns~1µs	
ビーム電流(最大)	100 mA	
最大繰り返し	20 Hz	
高周波周波数	2857 MHz(S-Band)	

3 電子蓄積リング、KSR

電子蓄積リング、KSR は前述の 100MeV 電子線形加速器 の出力ビームを入射し、(1)300MeV までの加速を行って放 射光源として使用する**放射光源モード**と(2) 60~100 MeV の 入射エネルギーのまま周回させ、3次共鳴と高周波蹴り出 し法を併用した遅いビーム取り出しにより、ビームスピル を 0.1 秒から数 100 秒以上まで変化させ、90%以上にも及 ぶデューティーファクターを実現するストレッチャーモ ードの両者が存在する[6,7]。 KSRでは図2に示したように2つの長直線部のうち、北 側の一方を種々の実験に使用するために確保している点 に特徴がある。このため入射・取り出しは南側の一つの長 直線部で行う必要があり、遅い取り出しの際に静電セプタ ムがアパーチャーミニマムになる条件を実現するために 軌道補正を行っている[8]。

放射光による脱ガスに伴う真空の劣化を克服するため 長時間のエージングを要するアーク部を大気解放するこ となく長直線部への種々の装置の挿入を可能とするため、 この長直線部の両端にはゲートバルブが設置されており、 実験装置のリングへの着脱はこの直線部のみのベーキン グで対処可能となっている。

表3 KSR の主要パラメータ

A C HER DE // /			
最高エネルギー	放射光原モード	300 MeV	
	ストレッチャーモード	100 MeV	
周長		25.689 m	
ラティス構造	トリプルベンドダブ	ルアクロ	
	マティック		
超周期		2	
長直線部		5.619 m	
偏向角(1 台)		60°	
曲率半径		0.835 m	
高周波周波数		116.7 MHz	
ハーモニック数		10	

4 イオン蓄積・冷却リング、S-LSR

化学研究所附属原子核科学研究施設では、上記の既存施設に加えて、文部科学省の先進小型加速器開発推進事業の一環として、放射線医学総合研究所及び日本原子力研究所関西研究所、高エネルギー加速器研究機構等との共同研究によりがん治療等の医療用加速器の小型化のための要素開発を平成13年度から開始している[9]。

図2 電子線形加速器及び電子蓄積リング、KSR のレイアウト

こうした加速器開発及びビーム物理研究の実証の場と して、化学研究所附属原子核科学研究施設の既存の加速器 の建家内にイオン蓄積・冷却リング、S-LSRを建設し、要 素技術を加速器本体に組み込んで実証試験に結びつけて いくための準備を進めている[10,11]。リング本体の偏向電 磁石及び四重極電磁石の製作は完了し、現在磁場測定によ る性能評価を進めている[12,13]。電子ビーム冷却装置も現 在設計がほぼ確定し、製作を開始した段階にある[14]。図 3に1節で述べた陽子線形加速器の下流部分に設置予定 のS-LSRのレイアウトを示した。平成16年度にはリング の設置を開始し、精密据付及び配線・配管を完了して、平 成17年度にはビームのコミッショニングを開始する予 定であり、レーザー生成イオンビーム乃位相空間回転及び 電子ビーム冷却等の開発研究を推進する[15]。

S-LSR は先に述べた電子線形加速器及び電子蓄積リン グ、KSR と同一の放射線管理区域に設置されるので、電子 ビーム乃至は光子ビームとイオンビームを同時に使用す る「複合ビーム」[16]を用いた研究が可能なユニークなフ ァシリティーとしての特徴も兼ね備えている。今後こうし た方向の研究の可能性も追求していきたいと考えている。

参考文献

- M. Inoue et al., proc. of the 9th Symp. on Accelerator Sci. and Tech. (1993) pp196-198.
- [2] H. Dewa et al., Rev. Sci. Instrum. 67 (1996) pp3085-3091.

- [3] T. Shirai et al., Proc. of the 10th Symp. on Accelerator Sci. and Tech. (1995) pp82-84.
- [4] Y. Hayakawa et al., J. Phys. Soc. Jpn. 67 (1998) pp1044-1049.
- [5] J. E. Hill et al., Beam Science and Technology, 3 (1998) pp18-22.
- [6] A. Noda et al., Proc. of the 4th EPAC (1994) pp645-647.
- [7] A. Noda et al., Proc. of the 5th EPAC (1996) pp451-453.
- [8] T. Sugimura et al., JPN. J. Appl. Phys. 41 (2002) pp2276-2284.
- [9] 山田 聡、第14回加速器科学研究発表会、招待講演、 報告書
- [10] A. Noda et al.,Proc. of the 14th Symp. on Accelerator Sci. and Tech.
- [11] 白井敏之他、第14回加速器科学研究発表会、報告書
- [12] 池上将弘他、第14回加速器科学研究発表会、報告書
- [13] 竹内猛他、第14回加速器科学研究発表会、報告書
- [14] H. Fadil et al., Proc. of the 14th Symp. on Accelerator Sci. and Tech.
- [15] A. Noda et al., Beam Science and Technology, 6 (2001) pp21-23.
- [16] A. Noda, Nucl. Instr. and Meth. A441 (2000) pp154-158.

図3 イオン蓄積・冷却リング S-LSR のレイアウト