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Abstract

Simulations of the single-bunch instability due to the elec-
tron cloud reveal a significant further destabilization, if a
proton space-charge or beam-beam force is also taken into
account, and a resulting qualitative change in the instabil-
ity behaviour. The synergy between these phenomena is
possibly consistent with a simplified analytical few-particle
model, in which the effect of space charge (or beam-beam)
is represented by a z-dependent parabolic betatron tune
variation along the bunch, and that of the electron cloud by
a constant transverse wake and a linear tune variation. We
show that in this model the combination of electron cloud
and space charge can sustain larger growth rates.

1 INTRODUCTION

In this report, we discuss the interplay between the single-
bunch electron-cloud instability and a transverse space-
charge force or beam-beam interaction. The only effect
of space charge (or beam-beam) that we consider is the
quadratic variation of the betatron tune with the longitu-
dinal position along the bunch. Transversely the force is
assumed to be perfectly linear.

In Section 2 we compare the results of multi-particle
computer simulations for an LHC bunch in the CERN SPS
which do or do not include the space-charge or beam-beam
force. In the simulation, tune shift due to space-charge
or beam-beam are treated differently. To model the space
charge force, we apply on each turn an additional (inco-
herent) betatron rotation around the center of each longi-
tudinal bunch slice. In the case of beam-beam, we instead
rotate all particles around the bunch centroid, or around the
closed orbit. In all cases, the rotation angle varies with the
longitudinal position, according to the Gaussian beam pro-
file.

In Section 3 we develop 3 and 4-particle models, by
which we analytically study the combined effect of the
electron cloud, represented by a constant dipole wake and
a linear tune shift due to the electron pinch, and the space-
charge tune shift. For ease of calculation, we approximate
the Gaussian beam profile by an inverse parabola. We eval-
uate the final analytical expressions for the CERN SPS.

Results are summarized and conclusions are drawn in
Section 4.

2 SIMULATIONS

The effect of the electron cloud on the single bunch stabil-
ity is modelled by a dedicated simulation program, called
HEADTAIL [1]. This simulation code studies the turn-
by-turn interaction of a single bunch with an electron

cloud, which is assumed to be produced by the preceding
bunches. Both the bunch and the electrons are modelled by
macroparticles. The electric force that the electrons experi-
ence during the beam passage as well as the converse forces
that the electrons exert on various longitudinal slices of the
beam are computed using a PIC module. The interaction
between electrons and the beam is computed successively
for different longitudinal slices of the bunch.

In the simulation, the interaction between the beam and
the electrons occurs at one or more locations of the ring. In
between the beam is propagated around the arcs of the stor-
age ring. The betatron motion in both planes is modelled
by a rotation matrix. On each turn the bunch interacts with
a new, unperturbed electron distribution. The synchrotron
motion is included and the beam macro particles slowly ro-
tate in synchrotron phase space and interchange their longi-
tudinal positions. The effect of chromaticity is modelled by
an additional rotation matrix which depends on the energy
of each particle. Finally, a regular transverse impedance,
represented by a broadband resonator, as well as a proton
space-charge force or beam-beam interaction can option-
ally be taken into account.

More precisely, we model the transverse motion of
macroelectrons as follows. At each passage through the
electron cloud a particle of the bunch receives both a ver-
tical and a horizontal deflection, ∆x′ and ∆y′, which, if
selected, include the effect of the broadband impedance as
well. The particles are next propagated through the ring, by
means of (1) a matrix Mring describing the nominal phase
advance as determined by the betatron tune, (2) a matrix
Mchr modelling the effect of chromaticity and depending
on the particle’s momentum, and (3) a space-charge rota-
tion which varies with the particle’s longitudinal position,
according to the longitudinal density profile of the bunch.
The space-charge rotation is performed around the center
of a bunch slice, the other two around the closed orbit.
Thus, the total horizontal transformation from turn n to turn
(n + 1) is(

xn+1

x′
n+1

)
= Mchr(∆p) Mring[

Msc(z)
(

xn − x̄(z)
x′

n + ∆x′ − x̄′(z)

)
+

(
(̄x)(z)
x̄′(z)

)]
, (1)

and the corresponding transformation is applied in the ver-
tical plane. On each turn the beam macroparticles are re-
grouped into longitudinal slices, whose average sizes and
centroid positions are calculated.

We have performed a series of simulations for the LHC
beam at injection into the SPS. Table 1 lists the bunch pa-
rameters assumed, and table 2 gives further simulation pa-
rameters.



Figures 1–5 present the simulated beam size increase and
centroid motion for an LHC bunch passing for 500 turns
through the SPS. The figures refer to different represen-
tations of the space-charge or beam-beam force. In the
simulation of Fig. 1 only the effect of the electron cloud
is considered in addition to the linear ring optics. In the
second simulation, illustrated in Fig. 2, the effect of a con-
stant proton-space charge at 26 GeV is taken into account
as well. Comparison of Figs. 1 and 2 reveals that the space
charge renders the beam motion more unstable and more
violent. In particular, it leads to slice centroid oscillations
inside the bunch. On the other hand, the simulation without
space charge shows a persistent emittance growth, more or
less uniform along the bunch.

For the simulation reported in Fig. 2, the tune variation
due to space charge was computed from the initial trans-
verse beam size, neglecting the beam-size growth as a re-
sult of the instability. Since the bunch transverse size sen-
sibly increases over the simulated 500 turns, another simu-
lation was run where always the actual local beam size of
each bunch slice was assumed in the computation of the
space-charge force, with results as shown in Fig. 3. The
growing beam size reduces the space-charge force at later
times, and almost completely suppresses the coherent mo-
tion of the bunch centroid.

Figure 4 is the same as Fig. 2, except that the addi-
tional space-charge rotation was applied around the cen-
troid of the bunch and not around the center of each bunch
slice. This would model the effect of a hypothetical proton-
proton beam-beam collision. This case was included to de-
termine whether the rotation center is of importance, and
the comparison of Figs. 4 and 2 suggests it is. Figure 4
shows less perturbations inside the bunch, but large cen-
troid oscillations. Finally, Fig. 5 is the same as Fig. 4, ex-
cept that it uses the instantaneous average beam size over
the bunch for computing the beam-beam tune shift. As a
result the centroid motion, which was visible in Fig. 4, has
almost disappeared. This last case might approximate a
situation as in KEKB, where the beam size of the opposing
(electron) beam is always matched by an automatic feed-
back to the beam size of the positron beam, which is blown
up by the electron cloud. As in Fig. 4 the tune-shift rota-
tion is performed around the bunch centroid instead of the
slice center. However, a more realistic simulation of the
beam-beam force would rotate around the closed orbit.

The different signatures of the simulated instabilities
might explain differences between the actual beam obser-
vations at SPS and KEKB, since at the SPS injection mo-
mentum of 26 GeV/c the beam is still affected by space
charge forces.

3 3 AND 4-PARTICLE MODELS

In this section, we construct a few-particle model, in or-
der to study the interplay of space charge forces and the
electron cloud. This model includes the two primary ef-
fects of the electron cloud, which is (1) a transverse wake

Table 1: SPS parameters.

variable symbol value
bunch population Nb 1011

beam momentum p 26 GeV/c
circumference C 6900 m
synchrotron frequency fs 200 Hz
beam momentum p 26 GeV/c
electron-cloud density ρe 1012 m−3

rms bunch length σz 30 cm
rms energy spread σδ 0.002
betatron tunes Qx,y 26.6
average beta function βx,y 40 m
rms hor. beam size σx 3 mm
rms vert. beam size σx 2.3 mm
hor. & vert. chromaticity ξx,y 0
tune shift due to el. cloud ∆Qec 0.0077
space-charge tune shift ∆Qsc −0.0365
wake field — none

Table 2: Simulation parameters.

variable value
Size of the electron cloud 20σx×20σy

Size of the grid 1.1× cloud
Number of horizontal cells 128
Number of vertical cells 128
number of macroparticles 3×105

number of macro-electrons 105

number of bunch slices 50
longitudinal extent of bunch 1.2 m
longitudinal profile Gaussian
number of ep interactions per turn 1

field excited by transverse displacement between head and
tail of the bunch, and (2) a positive tune shift which in-
creases almost linear along the bunch. We now make the
assumption that the further ingredient introduced by the
space-charge force (or equivalently by a beam-beam inter-
action), is an additional variation of the betatron tune along
the bunch. Ignoring transverse nonlinearities, we assume
that the space-charge betatron tune shift only depends on
the longitudinal coordinate, and for simplicity we approxi-
mate the bunch profile by an inverse parabola.

A two particle-model does not predict a head-tail insta-
bility caused by the variation of the tune as a function of
longitudinal position. The situation here is different from
the regular head-tail instability at nonzero chromaticity. In
the latter case the betatron tune varies with momentum de-
viation δ, whereas here it depends on z. According to
Ref. [4] (see the footnote on page 198) for a z-dependent
tune no instability is expected from a 2-particle model.
This is because there is no net head-tail phase shift over
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Figure 1: Simulated vertical bunch shape (centroid and rms
beam size) after 0, 250, and 500 turns in the CERN SPS
assuming an electron cloud density ρe = 1012 m−3 without
proton space charge.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y 
(m

)

z (m)

Figure 2: Simulated vertical bunch shape (centroid and rms
beam size) after 0, 250, and 500 turns in the CERN SPS
assuming an electron cloud density ρe = 1012 m−3 with
proton space charge at 26 GeV/c. In this simulation, the
space-charge force is computed from the initial beam size.

the half period of oscillations where one particles is trail-
ing behind the other. In order to model the instability we
must consider 3 or more particles, where we do have a net
phase advance between the different particles. Such usage
of a multi-particle to model the single-bunch electron-cloud
effects was proposed by K. Cornelis [5].

In the following we first describe a 3-particle model, and
then extend it to 4-particles in order to study the variation
with particle number.

3.1 3 Particles

The bunch is modelled by 3 particles, distributed with a
constant oscillation amplitude ẑ and uniform spacing in
synchrotron phase space. We assume that each model par-
ticle carries a charge Nbe/3 and that particles excite a con-
stant wake force W0, which affects those following be-
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Figure 3: Simulated vertical bunch shape (centroid and rms
beam size) after 0, 250, and 500 turns in the CERN SPS
assuming an electron cloud density ρe = 1012 m−3 with
proton space charge at 26 GeV/c. In this simulation, the
space-charge force is computed from the actual local beam
size.
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Figure 4: Simulated vertical bunch shape (centroid and rms
beam size) after 0, 250, and 500 turns in the CERN SPS
assuming an electron cloud density ρe = 1012 m−3 with
a hypothetical pp beam-beam interaction of ξ = −0.037.
The beam-beam force is computed from the initial beam
size.

hind. This is of course a simplified description, and a re-
fined analysis should take into account the strong variation
of the wake with distance and with the longitudinal posi-
tion. Some particles exchange their position every 6th syn-
chrotron period, where the average phases of different par-
ticles are different.

The longitudinal positions of the particles evolve as

z1 = ẑ cos
(ωss

c

)
(2)

z2 = ẑ cos
(

ωss

c
+

2π

3

)
(3)

z3 = ẑ cos
(

ωss

c
+

4π

3

)
(4)
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Figure 5: Simulated vertical bunch shape (centroid and rms
beam size) after 0, 250, and 500 turns in the CERN SPS
assuming an electron cloud density ρe = 1012 m−3 with
a hypothetical pp beam-beam interaction of ξ = −0.037.
The beam-beam force is computed from the actual average
beam size.

where ẑ ≈ σz . Positive z indicates a position in front of
the bunch center.

We approximate the dependence of the angular betatron
frequency on the longitudinal position z as

ωβ(z) = ωβ,0

[
1 −

(
∆ωβ

ωβ

)
ec

z

ẑ
−

(
∆ωβ

ωβ

)
sc

z2

ẑ2

]

≡ ωβ,0

(
1 − a

z

ẑ
− b

z2

ẑ2

)
, (5)

where the first linear term represents the effect of the
electron cloud, the second quadratic one the space-charge
force, and we have introduced coefficients, which repre-
sent the maximum relative tune shift from electron cloud
and space charge, respectively.

Considering free betatron oscillations, the betatron
phases φi of the three particles are obtained by integration

φi(s) = ωβ,0
s

c
−

∫ s

0

ds
[
a cos

(ωss

c
+ φi,0

)
(6)

+b cos2
(ωss

c
+ φi,0

)]
= ωβ,0

s

c
− bsωβ,0

2c
(7)

−aωβ,0

ωsc
sin

(ωss

c
+ φi,0

)
(8)

−bωβ,0

4ωsc
sin

(
2ωss

c
+ 2φi,0

)

≡ ωβ
s

c
+ ∆φi(s). (9)

We have absorbed the non-oscillating term in the average
betatron phase advance ω̄β

s
c ,

ω̄β ≡ ωβ,0 − bωβ,0

2
, (10)

and introduce the oscillating part of the phase as

∆φi(s) ≡ −aωβ,0

ωs
sin

(ωss

c
+ φi,0

)

−bωβ,0

4ωs
sin

(
2ωss

c
+ 2φi,0

)
. (11)

Including the wake field, the betatron equation of motion
for the nth particle is

y′′
n +

[
ωβ(z)

c

]2

yn =
∑

n′,zn′>zn

Nbr0W0

3γC
yn′ (12)

where the sum extends of the particles in front of particle
n.

We need to evaluate the equations of motion for a third
period of the synchrotron oscillation. The solutions for the
other two thirds then simply follow by cyclic permutation.
The initial ordering of the particles is (1,3,2), i.e., by which
we indicate that the first particle is in front, followed by
particle no. 3, and particle 2 is at the end. After a sixth pe-
riod it changes to (3,1,2), and, thereafter, to (3,2,1), (2,3,1),
(2,1,3), and (1,2,3). We solve the equation of motion for
the first two sixths of a synchrotron period.

To this end, we write the solution for the nth particle as

yn = ỹn exp [−iφi(s)] , (13)

where the amplitude ỹn is assumed to be slowly varying
due to the effect of the electron wake field.

Inserting (13) and the definition of φ i(s), (9), into (12),
we have

ỹ′
n =

iNr0W0c

6γCωβ

∑
n′,zn′>zn

ỹn′ exp [−i∆φn′(s) + i∆φn(s)]

(14)
For brevity we further abbreviate the coefficient by

D ≡ Nr0W0c

6γCωβ
. (15)

Assuming that the phases ∆φn(s) are much smaller than
unity, we expand the exponential and can integrate the
above equation to yield

ỹn

(
Tsc

6

)
≈ ỹn (0) + iD

∑
n′,zn′>zn

ỹn′

[
Tsc

6
(16)

−i

∫ Tsc/6

0

(∆φn′ (s) − ∆φn(s)) ds

]

≈ ỹn + iD
∑

n′,zn′>zn

ỹn′

[
πc

3ωs

−i

(
aωβ,0c

ω2
s

)
[cos (π/3 + φn′,0) − cosφn′,0]

− i

8

(
bωβ,0c

ω2
s

)
[cos (2π/3 + 2φn′,0) − cos 2φn′,0]

+i

(
aωβ,0c

ω2
s

)
[cos (π/3 + φn,0) − cosφn,0]

+
i

8

(
bωβ,0c

ω2
s

)
[cos (2π/3 + 2φn,0) − cos 2φn,0]

]
.



It was pointed out by K. Oide that this expansion and inte-
gration is only valid, if the phase differences |∆φn′(s) −
∆φn(s)| remain small compared with 1. Otherwise, the in-
tegration could be done numerically, possibly also includ-
ing a more realistic shape of the wake field. For ease of
notation, we introduce the three abbreviations

C̄ ≡ D
πc

3ωs
(17)

Ā ≡ D
aωβ,0c

ω2
s

(18)

B̄ ≡ D
bωβ,0c

8ω2
s

, (19)

where Ā refers to the tune shift from the electron cloud and
B̄ to that from the space charge. Explicitly, the Eq. (16)
amounts to

ỹ1(π/3) ≈ ỹ1(0)

ỹ3(π/3) ≈ ỹ3(0) + ỹ1(0)
[
iC̄ − 3

2
Ā − 3

2
B̄

]
ỹ2(π/3) ≈ ỹ2(0) + ỹ1(0)

[
iC̄ − 3B̄

]
+ỹ3(0)

[
iC̄ +

3
2
Ā − 3

2
B̄

]
(20)

The corresponding equations for the second sixth syn-
chrotron period are

ỹ3(2π/3) ≈ ỹ3(π/3)

ỹ1(2π/3) ≈ ỹ1(π/3) + ỹ3(0)
[
iC̄ +

3
2
Ā +

3
2
B̄

]
ỹ2(2π/3) ≈ ỹ2(π/3) + ỹ3(π/3)

[
iC̄ + 3B̄

]
+ỹ1(π/3)

[
iC̄ − 3

2
Ā +

3
2
B̄

]
. (21)

We can rewrite these transformations as a matrix equations
relating the initial and final 3-component amplitude vectors

y(s) ≡ (ȳ1(s), ȳ2(s), ȳ3(s)),


y(π/3) = Mπ/3
y(0) (22)

and

y(2π/3) = M2π/3
y(π/3). (23)

According to Eqs. (20) and (21), the matrices Mπ/3 and
M2π/3 are

Mπ/3 =


 1 0 0

iC̄ − 3B̄ 1 iC̄ + 3
2 (Ā − B̄)

iC̄ − 3
2 (Ā + B̄) 0 1



(24)

and

M2π/3 =


 1 0 iC̄ + 3

2 (Ā + B̄)
iC̄ − 3

2 (Ā − B̄) 1 iC̄ + 3B̄
0 0 1


 .

(25)
After the second sixth synchrotron period the ordering of
the 3 particles changes as (3 → 1), i.e., now particle 3 is

in front, (2 → 3), and (1 → 2), which is described by the
permutation matrix

P =


 0 0 1

1 0 0
0 1 0


 (26)

and the total matrix for one full synchrotron period is ob-
tained by taking the 3rd power of the product matrix

Mtot ≡ (PM2π/3Mπ/3)3. (27)

In order to study the linear stability of this system, and to
determine possible growth rates, it is sufficient to find the
eigenvalues of the matrix

M1/3 ≡ PM2π/3Mπ/3. (28)

Only keeping terms of first and second order in Ā, B̄, and
C̄ , and also neglecting all higher-order cross products, we
evaluate the matrix M1/3 as

M1/3 ≈ (29)
 − 3

2 (Ā + B̄) + iC̄ 0 1
1 − 9

4 (Ā + B̄)2 − C̄2 0 3
2 (Ā + B̄) + iC̄

− 3
2 (Ā + B̄) + 2iC̄ + Ȳ 1 3

2 (Ā + B̄) + 2iC̄




where

Ȳ ≡ (
iC̄ + 3B̄

) (
−3

2
(Ā + B̄) + iC̄

)
(30)

The eigenvalues follow from the zeroes of the character-
istic polynomial p(λ),

p(λ) = 1 +
(

3iC̄ + 3iB̄C̄ +
9
4
Ā2 +

9
4
B̄2 + C̄2

)
λ

+3iC̄λ2 − λ3 (31)

In the absence of an electron cloud, we have X̄ = C̄ = 0,
the equation reduces to (1 − λ3) = 0 with the three solu-
tions λ1,2,3 = exp(i2π/3), exp(i4π/3), exp(i2π). Since
|λ1,2,3| = 1, there is no growing solution and the motion is
stable. With an electron cloud, but without pinch and with-
out space charge, we would have X̄ �= 0 and B̄ = X̄ = 0.
We note that the terms representing the tune variation along
the bunch, C̄ and X̄ , only enter in second order.

We find the solution to the general equation p(λ) = 0
numerically.

3.2 4 Particles

We now extend the model to 4 particles, in order to study
the change in the growth rates with the number of parti-
cles considered. We naturally assume that each of the 4
model particles carries a charge Nbe/4 and we again take
the same constant wake force W0. Some particles now ex-
change their position after every 8th synchrotron period,
where the average phases of different particles are differ-
ent.



The longitudinal positions of the particles evolve as

z1 = ẑ cos
(ωss

c

)
(32)

z2 = ẑ cos
(ωss

c
+

π

4

)
(33)

z3 = ẑ cos
(ωss

c
+ 2π

)
(34)

z4 = ẑ cos
(

ωss

c
+

3π

2

)
(35)

where ẑ ≈ σz .
We need to evaluate the equations of motion for a fourth

period of the synchrotron oscillation. The solutions for
the other 3 fourths then again follow by cyclic permuta-
tion. The initial ordering of the particles is (1,4,2,3). After
an eight period it changes to (4,1,3,2), and, thereafter, to
(4,3,1,2), etc. We solve the equation of motion for the first
two eightths of a synchrotron period.

We proceed exactly as for the 3-particle model. Making
similar approximations as before, Eq. (16) is replaced by

ỹn

(
Tsc

8

)
(36)

≈ ỹn (0) + iD4

∑
n′,zn′>zn

ỹn′

[
πc

4ωs

−i

(
aωβ,0c

ω2
s

)
[cos (π/4 + φn′,0) − cosφn′,0]

− i

8

(
bωβ,0c

ω2
s

)
[cos (π/2 + 2φn′,0) − cos 2φn′,0]

+i

(
aωβ,0c

ω2
s

)
[cos (π/4 + φn,0) − cosφn,0]

+
i

8

(
bωβ,0c

ω2
s

)
[cos (π/2 + 2φn,0) − cos 2φn,0]

]
.

where we have adjusted the definition of D to the reduced
particle charge:

D4 ≡ Nr0W0c

8γCωβ
. (37)

C̄4 ≡ D4
πc

4ωs
(38)

Ā4 ≡ D4
aωβ,0c

ω2
s

(39)

B̄4 ≡ D4
bωβ,0c

8ω2
s

, (40)

Explicitly, the Eq. (36) amounts to

ỹ1(π/4) ≈ ỹ1(0) (41)

ỹ4(π/4) ≈ ỹ4(0) + ỹ1(0)
[
iC̄4 − 1Ā4 − 2B̄4

]
ỹ2(π/4) ≈ ỹ2(0) + ỹ1(0)

[
iC̄4 + (

√
2 − 1)Ā4

]
+ỹ4(0)

[
iC̄4 +

√
2Ā4 + 2B̄4

]
ỹ3(π/4) ≈ ỹ3(0) + ỹ1(0)

[
iC̄4 + (

√
2 − 2)Ā4

]

+ỹ4(0)
[
iC̄4 + (

√
2 − 1)Ā4 + 2B̄4

]
+ỹ2(0)

[
iC̄4 − Ā4

]
The corresponding equations for the second eight syn-
chrotron period are

ỹ4(π/2) ≈ ỹ4(π/4) (42)

ỹ1(π/2) ≈ ỹ1(π/4) + ỹ4(0)
[
iC̄4 + Ā4 + 2B̄4

]
ỹ3(π/2) ≈ ỹ3(π/4) + ỹ4(π/4)

[
iC̄4 + (1 −

√
2)Ā4

+2B̄4

]
+ ỹ1(π/4)

[
iC̄4 −

√
2Ā4

]
ỹ2(π/2) ≈ ỹ2(π/4) + ỹ4(π/4)

[
iC̄4 + 1Ā4

]
+ỹ1(π/4)

[
iC̄4 − 2B̄4

]
+ỹ3(π/4)

[
iC̄4 +

√
2Ā4 − 2B̄4

]
As before, we can rewrite these transformations as a ma-
trix equations relating the initial and final (4-component)
amplitude vectors 
y4(s) ≡ (ȳ1(s), ȳ2(s), ȳ3(s), ȳ4(s)),


y4(π/4) = Mπ/4
y4(0) (43)

and

y4(π/2) = Mπ/2
y4(π/4). (44)

According to Eqs. (20) and (21), the matrices Mπ/4 and
Mπ/2 are

Mπ/4 = (45)


1 0
iC̄4 + (

√
2 − 1)Ā4 1

iC̄4 + (
√

2 − 2)Ā4 iC̄4 − Ā4

iC̄4 − Ā4 − 2B̄4 0

0 0
0 iC̄4 +

√
2Ā4 + 2B̄4

1 iC̄4 + (
√

2 − 1)Ā4 + 2B̄4

0 1




and

Mπ/2 = (46)


1 0
iC̄4 − 2B̄4 1

iC̄4 −
√

2Ā4 0
0 0

0 iC̄4 + Ā4 + 2B̄4

iC̄4 +
√

2Ā4 − 2B̄4 iC̄4 + Ā4

1 iC̄4 + (1 −√
2)Ā4 + 2B̄4

0 1




The permutation matrix in this case is

P4 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 (47)



and the total matrix for one full synchrotron period is ob-
tained by taking the 4th power of the product matrix

M4,tot ≡ (P4Mπ/2Mπ/4)4. (48)

We now need to determine the eigenvalues of

M1/4 ≡ P4Mπ/2Mπ/4, (49)

which can be computed numerically.

3.3 Application to the CERN SPS

We use typical SPS parameters listed in Table 1 and ap-
proximate the wake field as constant [2],

W0 =
8πρeC

Nb
, (50)

the centroid tune shift due to the electron cloud

∆Qec ≈ rp

2γ
βyρeC (51)

where C is the ring circumference, and the space-charge
tune shift

∆Qsc ≈ − βyrpCNb

γ3(2π)3/2γ3σzσy(σx + σy)
. (52)

We start by evaluating the expressions derived from the
3-particle model. Inserting all the definitions, we have

C̄ =
4π2ρerpc

2

9ωsγωβ
(53)

Ā ≈ 4πρerpc
2

3γω2
s

(
∆Q

Q

)
ec

(54)

B̄ ≈ πρerpc
2

6γω2
s

(
∆Q

Q

)
sc

, (55)

where we have approximated ωβ ≈ ωβ,0 and used the
equality ∆ωβ/ωβ = ∆Q/Q (the symbol Q denotes the
betatron tune).

Assuming the parameter values of Table 1, we then ob-
tain W0 ≈ 2 × 106 m−2, ∆Qec ≈ 0.008, ∆Qsc ≈ 0.037,
and

C̄ ≈ 2.4 (56)

Ā ≈ −3.8 (57)

B̄ ≈ 2.3 (58)

For the nominal SPS parameters, the two coefficients
multiplying the sinusoidal functions in the expression for
∆φi(s), Eq. (11), are almost equal to 2, and, hence, the
linear expansion of the exponential in Eq. (16), which as-
sumes |∆φn − ∆φn′ | to be much smaller than 1, is not a
good approximation. As mentioned earlier, this problem
could be overcome by numerically computing the integrals
in Eq. (16). In that case one might also replace the constant
wake field by a more accurate resonator approximation, or

even by a simulated wake field. However, we do not pur-
sue these questions in the present report, and simply evalu-
ate the formulae which we have derived above. We expect
that this still gives a meaningful estimate of the instabil-
ity growth rate and of its qualitative dependence on vari-
ous parameters, since for tune shifts 3 or 4 times smaller
than nominal, our treatment is perfectly valid. The formu-
lae would also be valid with the nominal tune shifts but a
higher synchrotron tune, e.g., for the B factories.

We first numerically solve the equation p(λ) = 0 for a
case with the electron-cloud wake field W0 �= 0, but with-
out the electron pinch and the space charge tune shifts, i.e.,
we consider C̄ = 2.4, B̄ = 0, Ā = 0. The magnitude of the
maximum eigenvalue is |λ|max ≈ 6.65. The corresponding
instability rise time is

τ =
Ts/3

ln |λ|max
, (59)

which yields about 0.88 ms. The factor 3 enters, since we
analyse the matrix describing the amplitude evolution over
a third of the synchrotron period Ts.

Next, we include the tune variation due to the electron
pinch, i.e., we compute the eigenvalue for C̄ = 2.4, B̄ = 0,
Ā = −3.8, and find |λ| ≈ 6.69 and still τ ≈ 0.88 ms.

Finally, we also add the space-charge force, i.e., C̄ =
2.4, B̄ = 2.3, Ā = −3.8, which yields |λ| ≈ 6.19 or τ ≈
0.91 ms. The addition of the space charge decreases the
growth rate by about 7%. However, if we assume a larger
value for the tune shift −∆Qsc, the growth rate increases.

Next, we perform the same calculations for the 4-particle
model. In this case, with wake field only, C̄4 = 1.80, we
have |λ|max = 6.31 or τ = 0.68 ms; with wake field and
electron pinch, C̄4 = 1.80, Ā4 = −2.87, we find |λ|max =
5.75 or τ = 0.71 ms; and with wake field, electron pinch
and space charge, C̄4 = 1.80, Ā4 = −2.87, B̄4 = 1.71,
we obtain |λ|max = 6.71 or τ = 0.66 ms. Thus, in the
4-particle model, the space charge reduces the rise time by
about 8%.

We have also computed the eigenvectors for the different
cases. The components of the eigenvector corresponding
to the largest eigenvalue are large for the particles 2 and
3, in the 3-particle model, and for particles 3 and 4, in the
4-particle model. In both models the relative phase shift
between the last and the second last particle reverses, if
space charge detuning is included. With space charge the
oscillation phase of the last particle is lagging behind that
of the second last. Without space charge it is the opposite.

In other words, our simplified 3 and 4-particle models
indeed suggest that the tune shift variation along the bunch
due to space charge may change the instability growth rate
and possibly the instability pattern. The predictions of the
4-particle model appear closer to the simulation results of
Section 2 than those of the 3-particle model.

To better understand the difference between the 3 and 4-
particle models, we have explored a larger range of space-
charge tune shifts ∆Qsc. Figure 6 illustrates the change in
the instability rise time with ∆qsc, which is predicted by



Figure 6: Instability rise time vs. maximum space-charge
tune shift ∆Qsc, for the SPS parameters of Table 1, assum-
ing a constant electron-cloud wake field W0 ≈ 1.7 × 106

m−2, which corresponds to ρe ≈ 1012 m−4, and an elec-
tron pinch resulting in ∆Qec ≈ 0.0077 at the center of
the bunch. Physical space-charge tune shifts correspond to
negative values of ∆Qsc; positive values would model the
beam-beam interaction in an e+e− or pp̄ collider.

the two models, if we keep all other parameters constant.
Again we see that the additional parabolic tune variation
due to the space-charge force can have a noticeable effect,
and it acts destabilizing over most of the parameter range,
and, in particular, for the model using a larger number of
particles. This appears consistent with the computer simu-
lations. Increasing the number of model particles from 3 to
4 shifts the value of ∆Qsc where the maximum rise time is
assumed towards 0, and it also decreases the predicted rise
time for all values of ∆Qsc.

It has been remarked by K. Oide [6] that the 3 or 4-
particle model does not predict any threshold current or
threshold impedance. This is also true if there is only
a wake field but no pinch and no space charge, i.e., for
Ā = 0, B̄ = 0, and C̄ �= 0.

By contrast, an exact threshold is always found in stan-
dard mode-coupling calculations based on a perturbative
solution of the Vlasov equation, which consider a con-
tinuous beam distribution, and also in a 2-particle model
[4]. Figure 7 displays the growth rates predicted by the
3 and 4-particle models as a function of the wake-field
strength. The figure suggests that for an increasing num-
ber of model-particles the growth rate approaches a thresh-
old near W0 ≈ 2 × 105 m−2. For comparisom, the exact
threshold predicted by the 2-particle model occurs at [4]

W thr,2
0 =

8γCωβ,0ωs

πrpc2Nb
, (60)

which, in our example, yields W thr,2
0 ≈ 3.3 × 105 m−2,

about 30% higher than the approximate threshold obtained
for 3 or 4 particles.

Figure 7: Growth rate vs. strength of electron wake-field
W0, for the SPS parameters of Table 1, without electron
pinch and without space charge.

4 CONCLUSION

Transverse space-charge forces and the beam-beam colli-
sion both introduce a Gaussian variation of the betatron
tune along the bunch. Computer simulations of the single-
bunch electron-cloud instability show that including this
tune variation may enhance and alter the instability driven
by the electron cloud.

In order to explore possible mechanisms by which the
tune variation may affect the instability, we have developed
two analytical few-particle models. In these models, we
represent the bunch by either 3 or 4 particles, the electron
cloud by a constant wake field and by a linear tune change
along the bunch, and the space charge (or beam-beam inter-
action) by a parabolic tune change. Both models show that
the space-charge or beam-beam tune shift may act destabi-
lizing, in a large range of the parameter space. The agree-
ment between the analytical model and simulation appears
to improve with an increasing number of model particles.

Finally, in both few-particle models, the sign of the
parabolic tune shift that would represent a beam-beam in-
teraction for oppositely charged bunches results in slightly
faster instabilities than the other sign corresponding to the
space-charge tune shift, but the difference appears to de-
crease with the number of model particles.
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